(1)
 fircer

The electricians' guide

$$
2 \mathrm{O} 13-2 \mathrm{O} 14
$$

For domestic and commercial applications

Contents

Introduction to relay controlled lighting systems page 2... 4
Comparison between relay system and traditional system (Single Zone On/Off control) page 5... 8
Comparison between relay system and traditional system (2 zone, 3 sequence On/Off control) page 9... 12
Approvals page 13
10 Series - Light dependent relays page 14... 19 4C Series - Relay interface modules page 90
11 Series - Modular light dependent relays page 20... 2748 Series - Relay interface modules page 91
12 Series - Time switchespage 28... 3558 Series - Relay interface modules page 92
13 Series - Electronic step relays page 36... 4319 Series - Override \& Status indicating
14 Series - Electronic staircase timers page $44 . . .50$ modules page 93... 97
Wiring diagram showing types: page 8... 105
27.01, 27.21, 26.01, 13.81, 13.91, 15.51... page 51 7P Series - Surge Protection Device page 106... 120
15 Series - Dimmer page 52... 57 70 Series - Line monitoring relay page 121... 125
18 Series - PIR movement detector page 58... 69 72 Series - Level control relays
20 Series - Modular step relays page 70... 73 for conductive liquids page 126... 133
22 Series - Modular contactors page 74... 77 Type 72.42 - Priority change relay page 134, 135
26 Series - Step relays page 78... 81 Type 72.A1/B1 - Float switch page 136, 137
27 Series - Step relays page 82... 8577 Series - Modular Solid State Relay page 138
1T Series - Room thermostat page 88, 8980 Series - Modular timers page 142... 149
81 Series - Modular timers page 150... 152

Today, there is a practical and viable alternative to the traditional way of controlling domestic and commercial lighting.

Economy and flexibility

Achieving the control of lighting where there is more than one control switch, particularly where they are located some distance from one another, has always been complicated and costly. A second control switch requires 3 additional wires, whilst every intermediate switching location requires no less than 4 wires. In such cases, utilising an impulse (or step) relay has many advantages; designing the system is simpler - it is more easily expanded - installation costs are noticeably reduced.

Simplicity

Using 2-wire pushbuttons to control the coil of a centrally located impulse relay, which in turn controls the lights, greatly simplifies the wiring normally associated with one-way, two-way and intermediate switches. The 2 -wire coil "command circuit" is easily extended to as many lighting control locations as needed, and can use smaller and neater conductors ($0.5 \mathrm{~mm}^{2}$ - CEI 64-8), since they need only to carry the load of the relay coil (typically $20 \div 600 \mathrm{~mA}$).
The power circuit to the lights should of course be of sufficient capacity, but instead of following the usual
route of a traditional system to all the switches, it needs to run only to the impulse relay and then to the lights.

Safety

Where necessary, and particularly for safety reasons, a transformer can be used to power the command circuit at a voltage lower than the supply voltage - impulse relay coils being available in several AC or DC voltages. No other component offers this enhanced safety through separating the command from the power circuit, nor the savings derived from added versatility and simplification of the system.

Versatility

In addition to the technical advantages already described, a number of versatile mounting modes for the relay are possible; ranging from a normal junction box, screw fixing, and 35 mm rail (EN 60715) mounting systems.

Introduction to relay controlled lighting systems

Conforming to International Standards

In Europe, EU Directive 46/90 and successive amendments state that, as well as using recognised technicians to carryout the installation, the materials and components used in the system should adhere to International and National standards. It is particularly important that this can be verified with Declarations of Conformity citing the appropriate standards, and certification documents from the appropriate National certification organisation.

FINDER impulse relays are designed and constructed in compliance to CEI regulations and, depending on type, have been officially certified by the appropriate standards authorities with respect to performance and quality, being subject to both Type Testing and ongoing periodic QC testing. (Refer to page 13 of this Guide)

APPROPRIATE STANDARDS

EN 61810-1:
Electromechanical Elementary Relays - Part 1:
General and safety requirements
EN 60669-1:
Switches for household and similar fixed electrical installations. General requirements
64-8: Electrical Systems.

Noise level

FINDER is engaged in continual research into the reduction of the acoustic noise generated by the mechanical action of operating the contacts.

Improved with respect to earlier versions of impulse relay, the current 20,26 Series and 27 series create no more noise than a normal switch (about 20 dB), whilst the SILENT IMPULSE RELAY "13.81" and "13.91" generates no noise noticeable above the general background noise where it is installed.

The Switching Function code

The Switching Function fundamentally defines the particular sequence in which the step relay contacts open and close, and the number of "steps" before this sequence repeats itself. The digit in the fourth position of the Finder part number denotes the Switching Function.

Relay type	Number of Steps	Switching Sequence			
		1	2	3	4
xx.x1	2	1	4		
xx.x2	2	$1^{1} 1^{1}$	44		
xx.x3	2	14	$4{ }^{1}$		
xx.x4	4	$\left.1^{1}\right)^{\prime}$	44	$1 / 1$	$4{ }^{\prime}$
xx.x5	4	$\nu^{\prime}{ }^{1}$	1^{1}	4	44
xx.x6	3	$1^{1} 1^{1}$		44	
xx.x8	4	$1^{1} 1^{1}$	$4{ }^{1}$	$1^{1} 1^{\prime}$	$1!$

Comparison between relay system and tradifional system

Relay System Wiring - Single Zone On/Off control
Using single relay (Function code " 1 ") and simple wiring Possible relay types, 20.21-26.01-27.01-27.21-13.81-13.91

Comparing both systems, even for the simplest uses, the relay system offers advantages.
Only two wires are required for the "command circuit", and they can be of a smaller cross section (0.5 mm). Whereas, in a traditional system the conductors have to be
sized to take the load current and are far more numerous. From an economic viewpoint, not only are there savings in material costs, but also less time is taken by the electrician to install the relay system. This system is also much easier to modify or extend.

Comparison between relay system and traditional system

Traditional System Wiring - Single Zone On/Off control
Using multi-pole switches and multiple wiring

Comparison between relay system and tradifional system

Wiring Schematic - Relay system
Single Zone On/Off control - Function code "1" (1 pole 2 step sequence) relay

Example shows relay type 27.01.

Comparison between relay system and traditional system

Wiring Schematic - Traditional system
Single Zone On/Off switching - Multi-pole switches and wiring

Comparison between relay system and traditional system

Relay System Wiring - 2 Lighting Zones, 3 sequence On/Off control
Using single relay (Function code " 6 ") and simple wiring
Possible relay types, 20.26-26.06-27.06-27.26

For more complex functions such as the one above, the relay system is self evidently simpler and more economical to install. Savings of typically 40% can be achieved. The function of this particular application is to offer 3-step
sequence control over two circuits, or lighting "zones", using a single impulse relay with 2 independent contacts. Successive operation of any of the push buttons sequences the lighting through all three permutations.

Comparison between relay system and traditional system

Traditional System Wiring - 2 Lighting Zones
Using mullii-pole switches and complex wiring

Comparison between relay system and traditional system

Wiring Schematic - Relay system
2 Zone On/Off switching - Function code "6" (2 pole 3 step sequence) relay

Example shows relay type 27.06 .

Comparison between relay system and traditional system

Wiring Schematic - Traditional system
2 Zone On/Off switching - Multi-pole switches and complex wiring

Approvals (According to type)

C $\quad \begin{aligned} & \text { Manufacturers } \\ & \text { Declaration of Conformity }\end{aligned}$

Finder has the widest range of quality approvals of any relay manufacturer.

Quality products; respecting the environment.

10 Series - Light dependent relay

Type 10.32 "Powerful"

Double output-2 NO 16A

 for Live and Neutral switchingItalian Patent "light feedback compensation" innovative principle

- 2 NO, 16 A 230 V AC
- Supply voltage: AC
- For pole or wall mounting

C © © (B)

Internal connection

10 Series - Light dependent relay

Type 10.41 "Universal"

Single output - 1 NO 16A for Live switching Italian Patent "light feedback compensation" innovative principle

- 1 NO, 16 A 230 V AC
- Supply voltage: AC
- For pole or wall mounting

$C \in$ © (B)

10 Series - Light dependent relay

Type 10.42 "Double"
Two independent outputs - 2 NO 16A

- 2 NO, 16 A 230 V AC
- Supply voltage: AC
- For pole or wall mounting

C \in © (1)

10 Series - Light dependent relay

Type 10.51 "Small"

Single output - 1 NO 12A
Italian Patent "light feedback compensation" innovative principle

- 1 NO, 12 A 230 V AC
- Supply voltage: AC
- For pole or wall mounting

C © © (B)

Internal connection

10 Series - Light dependent relay

Type 10.61

- Fixed sensivity 10 lux ($\pm 20 \%$)
- Prewired with silicone wire, 500 mm length
- 1 NO, 16 A 230 V AC

Supply voltage: AC

- Mounting on street light body

C \in

10 Series - Light dependent relay

Advantage of the "light feedback compensation" principle

Light dependent relay where the lighting being controlled does not influence the light level seen by the sensor

Traditional light dependent relay where the lighting being controlled influences the light level seen by the sensor

Type 10.32, 10.41 and 10.51 light dependent relay with "light feedback compensation"

recalculated OFF threshold

The innovative principle of "light feedback compensation" avoids the annoying and damaging effects of the lamps repeatedly "hunting" between On and Off, due to poor installation

Ambient light level as measured by the light dependent relay's integral sensor.
Ambient light + controlled light level as measured by the light dependent relay's integral sensor.

Notes

1. It is good practice to try to achieve a correct installation where the light emitted from the lamp(s) does not influence the light level seen by the sensor, although the "light feedback compensation" principle will help when this is not fully achievable. In this case it should be appreciated that the "light feedback compensation" principle may delay slightly the time of Switch Off - beyond the ideal.
2. The compensation principle is not effective where the combined effect of the ambient light and the controlled lighting exceeds 120 lux.
3. The 10.32 and 10.41 types are compatible with gas discharge lamps that attain full output within 10 minutes, since the electronic circuit monitors lamps' light output over a 10 minutes period to achieve a true assessment of its contribution to the overall lighting level.

Energy saving in a new light!
11 Series. Light dependent relays 12-16 A

- Innovative Finder patent simplifies installation
- Totally Cadmium free (contacts and photosensor)
- Double insulation between supply and light sensor

11 Series - Light Dependent Relay

Type 11.31 "Small"

17.5 mm width

- 1 NO, 16 A 250 V AC
- Supply voltage: AC
-35 mm rail (EN 60715) mount

C \in (1) ©

Accessories

Light sensor Type 011.02

- Protection category: IP 54
- Cadmium free
- Non polarized
- Double insulated with respect to light dependent relay supply

11 Series - Light Dependent Relay

CE © (®1)

Type 11.41 "Classic"

"zero hysteresis", 4 position selector
European patent "Zero hysteresis"
for energy saving
Italian patent "Light feedback compensation" principle

- 1 CO, 16 A 250 V AC
- Supply voltage: 230 V AC
- 35 mm rail (EN 60715) mount

Accessories

Light sensor Type 011.02

- Protection category: IP 54
- Cadmium free
- Non polarized
- Double insulated with respect to light dependent relay supply

11 Series - Light Dependent Relay

Advantage of the "Zero hysteresis" patented circuit: ensures reliable switching without wasting energy

Brightness of the natural light
The NO of the light dependent relay is closed (light is switched on)

11 Series - Light Dependent Relay

Type 11.42 "Double"

- 2 independent outputs
- 2 individual lux settings
- 4 position selector
- 1 CO + 1 NO, 12 A 250 V AC
- Supply voltage: 230 V AC
- 35 mm rail (EN 60715) mount

(\in (H) PG

Accessories

Light sensor Type 011.02

- Protection category: IP 54
- Cadmium free
- Non polarized
- Double insulated with respect to light dependent relay supply

11 Series - Light Dependent Relay

Advantage of the "light feedback compensation" principle (Italian Patent)

 avoids the effect of the lamps repeatedly "hunting" between On and Off, due to poor installationLight dependent relay where the lighting being controlled does not influence the light level seen by the light sensor

Traditional light dependent relay where the lighting being controlled influences the light level seen by the light sensor

Type 11.41 and 11.91 light dependent relay with "light feedback compensation"

Correct functioning - provided the light sensor can be shielded from the effects of the controlled lighting switching On and Off

Incorrect functioning where the lamps cycle between On and Off, because their effect is being detected by the light sensor

The innovative principle of "light feedback compensation" avoids the annoying and damaging effects of the lamps repeatedly
"hunting" between On and Off, due to poor installation

Ambient light level as measured by the light dependent relay's light sensor
Ambient light + controlled light level as measured by the light dependent relay's light sensor

Notes

1. It is good practice to try to achieve a correct installation where the light emitted from the lamp(s) does not influence the light level seen by the light sensor, although the "light feedback compensation" principle will help when this is not fully achievable. In this case it should be appreciated that the "light feedback compensation" principle may delay slightly the time of Switch Off - beyond the ideal.
2. The compensation principle is not effective where the combined effect of the ambient light and the controlled lighting exceeds a maximum value (200 lux for the 11.91, 160/2,000 lux for standard/high range of the 11.41).
3. The 11.41 and 11.91 types are compatible with gas discharge lamps that attain full output within 10 minutes, since the electronic circuit monitors lamps' light output over a 10 minute period to achieve a true assessment of its contribution to the overall lighting level.

11 Series - Light Dependent Relay

Type 11.91 "Versatile"

Light dependent relay + time switch
Auxiliary output (light only dependent) to power optional 19.91 power module Italian patent "Light feedback compensation" principle

- 1 CO (16 A 250 V AC) + 1 aux output
- Supply voltage: 230 V AC
- 35 mm rail (EN 60715) mount

Accessories

Light sensor Type 011.02

- Protection category: IP 54
- Cadmium free
- Non polarized
- Double insulated with respect to light dependent relay supply

Flush-mounted light sensor Type 011.03

Protection category: IP 66/67

11 Series - Light Dependent Relay

Type 19.91.9.012.4000-Power module 16 A

17.5 mm width

- 1 CO 16/30 A 250 V AC
- Supply voltage: DC
- 35 mm rail (EN 60715) mount

(ϵ © (B)

Accessories

2-pole connector Type 011.19

For direct connection of 11.91 auxiliary output (Y1-Y2) to 19.91 supply (A1-A2)

A solid state output at terminals Y1-Y2 is provided (rated $12 \mathrm{~V} \mathrm{DC}, 80 \mathrm{~mA} 1 \mathrm{~W}$ max.).: this can be used with the power module 19.91.9.012.4000 connected by the dedicated 011.19 connector.
L

12 Series - Time switches

Type 12.01

Mechanical daily time switch
35.8 mm width

- 1 CO, 16 A 250 V AC
- Supply voltage: AC
- 35 mm rail (EN 60715) mount

CE 厄

Type 12.11

Mechanical daily time switch
17.6 mm width

- 1 NO, 16 A 250 V AC
- Supply voltage: AC
- 35 mm rail (EN 60715) mount

C \in PG

Type 12.21 and 12.22

Electronic digital weekly time switch 35.8 mm width

- 1 CO, 16 A 250 V AC (12.21)

2 CO, 16 A 250 V AC (12.22)

- Supply voltage: AC or AC/DC
- 35 mm rail (EN 60715) mount

C \in

Type 12.21

Type 12.22

Type 12.22

Type 12.31
Mechanical daily or weekly time switch 72x72 mm

- 1 CO, 16 A 250 V AC
- Supply voltage: AC
- Front panel mounting

C $\in \mathbb{C}$

12 Series - Time/Astro-Switch

Type 12.51
Digital (analogue-style) time switch, daily/weekly programming
35.8 mm width

- 1 CO, 16 A 250 V AC
- Supply voltage: 230 AC
- 35 mm rail (EN 60715) mount

C ϵ

12 Series - Time switches

Type 12.71
Electronic digital weekly time switch, 17.6 mm width

- 1 CO, 16 A 250 V AC
- Supply voltage: AC or AC/DC
- 35 mm rail (EN 60715) mount

C \in

Accessories

PC programming kit Type 012.90

12 Series - Time/Astro-Switch

Type 12.81

Digital astro-switch

- Astro program: calculation of sunrise and sunset times through date, time and location coordinates
- Location coordinates easily settable for most European countries trough post codes
- 35.8 mm width
- 1 CO, 16 A 250 V AC
- Supply voltage: 230 V AC
-35 mm rail (EN 60715) mount

(\in e

12 Series - Time switches

Type 12.91 "Zenith"

- 1 CO, 16 A 250 V AC

Type 12.92 "Zenith"

- 2 CO, 16 A 250 V AC

Electronic digital weekly time switch
"Astro" program
35.8 mm width

Tipi 12.91.x.xxx. 0090 "Zenith"

- 1 CO, 16 A 250 V AC
- Version for programming via PC (see page 33)
Electronic digital weekly time switch
"Astro" program 35.8 mm width
- Supply voltage: AC
- 35 mm rail (EN 60715) mount

(\in

Type 12.91 and 12.91... 0090

Type 12.92

L

Type 12.92

13 Series - Quiet operating - electronic step relay

Type 13.01

- 1 CO, 16 A 250 V AC
- Supply voltage: AC or DC
- 35 mm rail (EN 60715) mount
(\in

Type	Number of steps	Sequence	
		2°	
13.01	2	4^{\prime}	${ }^{\circ} ل$

Monostable wiring diagram
L

Step wiring diagram

Push buttons

13 Series - Electronic step relay - Call/Reset relay

Type 13.11

1 Pole output contact Call relay with reset command

- 1 CO, 12 A 250 V AC
- Supply voltage: AC
- 35 mm rail (EN 60715) mount

CE ©

* If using a buzzer that is not continuously rated limit the energization period with an additional timer.

13 Series - Electronic step relay - Call/Reset relay

Type 13.12

Call relay with reset command

17.5 mm width
$-1 \mathrm{CO}+1 \mathrm{NO}, 8$ A 250 V AC

- Supply voltage: AC
- 35 mm rail (EN 60715) mount

CE PG

* If using a buzzer that is not continuously rated limit the energization period with an additional timer.

13 Series - Electromechanical monostable relay

Type 13.31

Interposing monostable relay

- 1 NO, 12 A 250 V AC
- Supply voltage: AC or DC
- For mounting within residential switch boxes
C ϵ

13 Series - Electronic step/monostable relay

Type 13.61

Multifunction step/monostable relay with reset command - Rail mount

- 1 NO, 16 A 250 V AC
- Supply voltage: AC
.35 mm rail (EN 60715) mount

C \in PG

Functions selectable with front rotary selector:
(RM) Monostable

(IT) Timing step relay

(RI) Step relay

\% Light ON

13 Series - Electromechanical monostable relay

Wiring diagram - 3 wire connection

Wiring diagram-4 wire connection

(1) finder
 13 Series - Quiet operating - modular electronic step relay

Type 13.81

- 1 NO, 16 A 230 V AC
- Supply voltage: AC
- 35 mm rail (EN 60715) mount

Type	Number of steps	Sequence	
		2°	
13.81	2	$\^{\prime}$	4

CE PG NF

Wiring diagram - 3 wire connection

13 Series - Quiet operation - electronic step reays

Operating mode setup for type 13.91
a) Remove the supply voltage
b) Press the control button
c) Apply the supply to the relay, keeping the button closed. After 3 second, the light will flash twice to indicate the selection of the "IT" function, or flash once for "RI" function.

Type 13.91 - Step relay and timing step relay (10 minutes)

- 1 NO, 10 A 230 V AC
- Supply voltage: AC
- Can be mounted behind blanking plates, as widely used in residential wiring systems

14 Series - Electronic staircase timer

Type 14.01

- 1 NO, 16 A 230 V AC
- Supply voltage: AC
- Time setting from 30 s to 20 min - 35 mm rail (EN 60715) mount

C \in © (BD) NF

Functions selectable with front rotary selector:
(BE) Staircase relay

(IT) Timing step relay

(BP) Staircase relay with early warning

(IP) Timing step relay with early warning

(RI) Step relay

\%. Light ON

14 Series - Electronic staircase timer

Wiring diagram-3 wire

$1=$ Functions selector
$2=$ Time delay adjustment potentiometer
$3=$ LED

Wiring diagram-4 wire

[^0]
14 Series - Electronic staircase timer

Type 14.71

- 1 NO, 16 A 230 V AC
- Supply voltage: AC
- Time setting from 30 s to 20 min
- 35 mm rail (EN 60715) mount

C \in PC (AD) NF

3-function front selector

| Staircase relay + Staircase maintenance functions |
| :--- | :--- |
| (not compatible with 18 series movement detectors) |

Functions:
(1) Staircase relay

Th Staircase maintenance (combined with staircase relay function)

Light ON

Wiring diagram-3 wire

$1=$ Functions selector
$2=$ Time delay adjustment potentiometer
$3=$ LED

Wiring diagram-4 wire

$1=$ Functions selector
$2=$ Time delay adjustment potentiometer
$3=$ LED

14 Series - Electronic staircase timer

Type 14.81

- 1 NO, 16 A 230 V AC
- Supply voltage: AC
- Time setting from 30 s to 20 min
- All terminals on same side
- 35 mm rail (EN 60715) mount

C \in © (H) NF

Functions:

Staircase relay

"Staircase maintenance" function

14 Series - Electronic staircase timer

Wiring diagram - 3 wire

Wiring diagram - 4 wire

(pushbutton configuration required as per the Installation manual)
$1=$ Time delay adjustment potentiometer
$1=$ Time delay adjustment potentiometer

14 Series - Electronic staircase timer

Type 14.91

- 1 NO, 16 A 230 V AC
- Supply voltage: AC
- Time setting from 30 s to 20 min
- 3 terminals, on same side
- 35 mm rail (EN 60715) mount

CE PG

Functions:

Signal ON pulse

$1=$ Time delay adjustment potentiometer

(1) finder

Wiring diagrom showing types:
27.01, 27.21, 26.01, 13.81, 13.91, 15.51

For informations see:
Type 13.81 - page 42
Type 13.91 - page 43
Type 15.51 - page 52, 53
Type 26.01 - page 78, 79
Type 27.01 - page 82
Type 27.21 - page 84

Different types of stepping relay can be used within the same system. Just observe the appropriate wiring for the Push buttons and Loads.

15 Series - Electronic step relay and Dimmer

If the lighting load comprises low voltage halogen lamps fed through either electromagnetic or electronic transformers, then do not connect more than one transformer per 15.51 dimmer.

C \in © (1)

Type 15.51

- Power max.: 400 W 230 V AC
- Supply voltage: AC
- Panel mount

Wiring diagram-3 wire

Operating mode setup:

On 15.51 operating mode 1 is preset, but it is possible to change it using the following sequence:
a) remove the supply voltage;
b) press the control button;
c) apply the supply to the relay, keeping the button closed for 3 second;
d) On button release, the light will flash twice to indicate the selection of operating mode 2 , or flash once for operating mode 1 .
Repeating the above steps will alternately change between operating modes.

15 Series - Electronic step relay and Dimmer

Functions (Type 15.51.8.230.0400)
Operating mode 1 (with memory): the previous light level is memorized.

Long control pulse: The light level is progressively raised or lowered through a maximum of 10 incremental steps.

Short control pulse: Alternately switches between On and Off. When switching On, the light level assumes the value set during the previous On state.

Operating mode 2 (without memory): on switch off, the light level is not memorized.

Long control pulse: The light level is progressively raised or lowered through a maximum of 10 incremental steps.

Short control pulse: Alternately switches On or Off between the maximum light level and the off state.

Functions (Type 15.51.8.230.0404)

Operating mode 3 (with memory): the previous light level is memorized.

Long control pulse: The light level is progressively raised or lowered.

Short control pulse: Alternately switches between On and Off. When switching On, the light level assumes the value set during the previous On state.

Operating mode 4 (without memory): on switch off, the light level is not memorized.

Long control pulse: The light level is progressively raised or Lowered.

Short control pulse: Alternately switches On or Off between the maximum light level and the off state.

15 Series - Electronic step relay and Dimmer

66 \ldots 0. 0 0 0 0

Type 15.81

- Power max.: 500 W 230 V AC
- Supply voltage: 230 V AC
- Multi-function
- Compatible with energy saving dimmable lamps
- 35 mm rail (EN 60715) mount

C © © (B)

Wiring diagram-4 wire

(1) finder

15 Series - Electronic step relay and Dimmer

Operating mode without memory: at switch-off, the light level is not memorized.
Long control pulse: The light level is progressively raised or lowered in linear way. The lowest value depend on the "minimum dimming level" regulator setting.
Short control pulse: Alternately switches between On and Off between the maximum light level and the off state.

Operating mode with memory: the previous light level is memorized.
Long control pulse: The light level is progressively raised or lowered in linear way. The lowest value dependent on the "minimum dimming level" regulator setting.
Short control pulse: Alternately switches between On and Off. When switching On, the light level assumes the value set during the previous On state.

Type of load	Selector setting		Regulator setting
	With memory (M)	Without memory (M)	
- Incandescent lamps - 230 V halogen lamps - $12 / 24 \mathrm{~V}$ halogen lamps with electronic transformer/ballast			It is suggested to set the "minimum dimming level" at the lowest value, so that the complete dimming range is available. But if it is necessary to avoid too low a level of illumination, a higher value can be set.
- Dimmable compact fluorescent lamps (CFL) - Dimmable LED lamps			It is suggested to initially set the "minimum dimming level" at an intermediate value and then if necessary, readjust for a level found to be compatible with the lamp being used. - +
- 12/24 V halogen lamps with toroidal or E-core electromagnetic transformer			It is suggested to set the "minimum dimming level" at the lowest value, so that the complete dimming range is available. But if it is necessary to avoid too low a level of illumination, a higher value can be set.

15 Series - Electronic step relay and Dimmer

Type 15.91

- Power max.: 100 W 230 V AC
- Supply voltage: 230 V AC
- For mounting within residential switch boxes

C ϵ

15 Series - Electronic step relay and Dimmer

Operating mode sełup
On 15.91 operating mode 4 (without memory) is preset, but it is possible to change it using the following sequence:
a) remove the supply voltage;
b) press the control button;
c) apply the supply to the relay, keeping the button closed for 3 second;
d) on button release, the light will flash twice to indicate the selection of operating mode 3, or flash once for operating mode 4. Repeating the above steps will alternately change between operating modes.

Functions (type 15.91.8.230.0000)

Operating mode 3 (with memory): the previous light level is memorized.

Long control pulse: The light level is progressively raised or lowered.

Short control pulse: Alternately switches between On and Off. When switching On, the light level assumes the value set during the previous On state.

Operating mode 4 (without memory): on switch off, the light level is not memorized.

Long control pulse: The light level is progressively raised or Lowered.

Short control pulse: Alternately switches On or Off between the maximum light level and the off state.

18 Series - PIR movement detector

Type 18.01
Internal installations
Protection category IP 40

Type 18.11
External installations
Protection category IP 54

- 1 NO, 10 A 230 V AC
- Supply voltage: AC

For wall mounting

C \in (B) (c)

The output relay will remain On for the pre-set time, following the last detection of movement.

18 Series - PlR movement detector

Mounting and orientation

Sensing area-18.01, 18.11-Wall mounting

Sensing area

18.01-Ceiling mounting, internal installations

18.11-Ceiling mounting, external installations

Tipo 18.21 Output connected to supply voltage Tipo 18.21.x.xxx. 0300 Output with potential free contact Surface mounting

Tipo 18.31 Output connected to supply voltage
Tipo 18.31.x.xxx. 0300 Output with potential free contact Recessed mounting
Tipo 18.31.x.xxx. 0031 Recommended for applications with high ceilings (up to 6 meters) Light ON time after last detection ($30 \mathrm{~s} . . .35 \mathrm{~min}$)

- 1 NO, 10 A 230 V AC
- Internal ceiling installation
- Protection category IP40
- Supply voltage: 230 V AC

C \in (1) (c)

Type 18.21/31

Type 18.21/31-0300

18 Series - PIR movement defector

Sensing area

18.21, 18.31-Internal ceiling installation, surface mounting or recessed mounting.

Single installation

Multiple installation
18.31.x.xxx. 0031 - High ceiling installation, for applications with high ceilings (up to 6 meters)

18.31.x.xxx. 0031 - Internal ceiling installation, movement and presence detector

18 Series - PIR movement defector

Suspended ceiling mounting

 and recess mounting version
Surface version

Type 18.41

Ceiling mounted movement detector.
Specifically for corridors up to 30 meters in length
Applications: hotel and office corridors, transit areas

- 1 NO, 10 A 230 V AC
- Internal ceiling installation
- Protection category IP40
- Supply voltage: 230 V AC

C ϵ

18 Series - PIR movement detector

Sensing area

Outline drawings

All-in-one: All mounting accessories are included in the packaging - just use the one appropriate for your installation.

18 Series - PIR movement defector

Suspended ceiling mounting

 and recess mounting version
Surface version

Tipo 18.51

Ceiling mounted presence detector.
High sensitivity and uniform detection
Applications: offices, schools, zones of low activity

- 1 NO, 10 A 230 V AC
- Internal ceiling installation
- Protection category IP40
- Supply voltage: 230 V AC

(ϵ

18 Series - PIR movement detector

Outline drawings

Suspended
ceiling mounting

Recess mounting

Surface
mounting

All-in-one: All mounting accessories are included in the packaging - just use the one appropriate for your installation.

18 Series - PIR movement detector

Flush box version

Tipo 18.61
Wall mount movement detector.
Wide angle of survey $\left(1820^{\circ}\right)$
Specific product for wall mounting

- 1 NO, 10 A 230 V AC
- Internal ceiling installation
- Protection category IP40
- Supply voltage: 230 V AC

C

(1) finder

Sensing area

 included in the packaging - just use the one appropriate for your installation.

18 Series - PIR movement detector

Wiring diagram - Parallel connection Type 18.01/11

Note: keep the polarity indicated for Phase and Neutral

18 Series - PIR movement detector

Wiring diagram - Parallel connection Type 18.01/11 and Type 18.21/31

Note: keep the polarity indicated for Phase and Neutral

20 Series - Modular step relays

Type 20.21

- 1 NO, 16 A 250 V AC
- Supply voltage: AC or DC
- 35 mm rail (EN 60715) mount

NF RINA $c{ }_{c} \mathrm{TI}_{\text {US }}$

Type	Number of steps	Sequence	
		2°	
20.21	2	1^{\prime}	4

Wiring diagram - Single pole relay Common supply to relay coil and load

20 Series - Modular step relays

Wiring diagram - Single pole relay Low voltage command circuit

Wiring diagram - Single pole relay - Common supply to relay coil and load with illuminated push buttons

L

Accessory - Module for use with illuminated push buttons Type 026.00
Sealed construction, 7.5 cm insulated flexible wire termination. This module is necessary when using between 1 and a maximum of 15 illuminated push buttons in the coil circuit (Each 1.5 mA max, 230 V AC). It must be connected in parallel to the coil of the relay.

20 Series - Modular step relays

Type 20.22/23/24/26/28

- 2 NO, 16 A 250 V AC
-1 NO + 1 NC, 16 A 250 V AC (20.23 only)
- Supply voltage: AC or DC
- 35 mm rail (EN 60715) mount

Type	Number of steps	Sequence			
		$1{ }^{\circ}$	2°	3°	4°
20.22	2	$1^{1} 1^{\prime}$	44		
20.23	2	114	41		
20.24	4	$1^{1} 1^{1}$	44		$4{ }^{1}$
20.26	3	$1^{1} 1^{\prime}$	$1{ }^{1} 4$	44	
20.28	4	$1^{\prime} 1^{\prime}$	$4{ }^{1}$	$1^{1} 1^{1}$	11

Wiring diagram - 2 pole relay Common supply to relay coil and load

20 Series - Modular step relays

Wiring diagram - 2 pole relay Low voltage command circuit

Wiring diagram - 2 pole relay - Common supply to relay coil and load with illuminated push buttons

L

Accessory - Module for use with illuminated push buttons Type 026.00
Sealed construction, 7.5 cm insulated flexible wire termination. This module is necessary when using between 1 and a maximum of 15 illuminated push buttons in the coil circuit (Each 1.5 mA max, 230 VAC . It must be connected in parallel to the coil of the relay.

22 Series - Modular contactors

C \in (HD) ©

Type 22.32
Type 22.32 with Auxiliary contact module
Options: - 2 NO or $1 \mathrm{NO}+1 \mathrm{NC}$ or $2 \mathrm{NC}, 25$ A 250 V AC

- 12; 24; 48; 60; 120; 230 V AC/DC
- without selector
- 35 mm rail (EN 60715) mount
$\left.\left.{\underset{A}{A}}_{2}^{A}\right|_{2} ^{1}\right|_{4} ^{3}$

2 NO
$1 \mathrm{NO}+1 \mathrm{NC}$
2 NC
$(\times 4 \times 0)$

Accessories
Auxiliary contact module Type 022.33 Type 022.35

22 Series - Modular contactors

C \in (11) ©

Type 22.34

Type 22.34 Auxiliary contact module
Options: - 4 NO or $3 \mathrm{NO}+1 \mathrm{NC}$ or $2 \mathrm{NO}+2 \mathrm{NC}, 25 \mathrm{~A} 250 \mathrm{~V} \mathrm{AC}$

$$
-12 ; 24 ; 48 ; 60 ; 120 ; 230 \text { V AC/DC }
$$

- without selector
- 35 mm rail (EN 60715) mount

Accessories
Auxiliary contact module Type 022.33 Type 022.35

22 Series - Modular contactors

Type 22.44

- 4 NO, 3 mm
(or $3 \mathrm{NO}+1 \mathrm{NC}$ or $2 \mathrm{NO}+2 \mathrm{NC}$)
- Supply voltage: AC or DC
- 35 mm rail (EN 60715) mount

C ϵ © :(1)

Type 22.64

Specifically intended: for high inrush current loads
$-4 \mathrm{NO}, 3 \mathrm{~mm}$
(or $3 \mathrm{NO}+1 \mathrm{NC}$ or $2 \mathrm{NO}+2 \mathrm{NC}$)

- Supply voltage: AC or DC
- 35 mm rail (EN 60715) mount

CE ©S :(IL)

Line and neutral switched

Line only switched

26 Series - Step relays

Type	Number of steps	Sequence	
		2°	
26.01	2	1^{\prime}	4

Type 26.01

- 1 NO, 10 A 250 V AC
- Supply voltage: AC
- Panel mount

C \subset (1) (1) (1)

Wiring diagram - single pole relay Common supply to relay coil and load

Wiring diagram - Single pole relay Low voltage AC command circuit

26 Series - Step relays

Wiring diagram - Single pole relay Common supply to relay coil and load with illuminated push buttons

Accessory - Module for use with illuminated push buttons Type 026.00
This module is necessary when using between 1 and a maximum of 15 illuminated push buttons in the coil circuit (Each 1.5 mA max, 230 V AC). It must be connected in parallel to the coil of the relay.

Wiring diagram - Single pole relay Low voltage DC command circuit

Appropriate accessory for 12 or 24 V DC control application
Accessories - for 12 and 24 V DC control applications

Type	$\mathbf{0 2 6 . 9 . 0 1 2}$	$\mathbf{0 2 6 . 9 . 0 2 4}$
Nominal voltage	12 V DC	24 V DC
Max temperature	$+40^{\circ} \mathrm{C}$	$+40^{\circ} \mathrm{C}$
Operating range	$(0.9 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$	

26 Series - Step relays

C © © (B)

IRAM

Type 26.02/03/04/06/08

Type	Number of steps	Sequence			
		$1{ }^{\circ}$	2°	3°	4°
26.02	2	$)^{1} 1^{1}$	44		
26.03	2	$1^{1} 4$	$4{ }^{1}$		

26.04	4	$1^{1} 1^{\prime}$	44	$1 / 1$	41
26.06	3	$1^{1} 1^{1}$	$)^{1} 4$	44	
26.08	4	$1^{1}{ }^{1}$	$4{ }^{1}$	$1^{1} 1^{1}$	$1^{1} 4$

- 2 NO, 10 A 250 V AC
-1 NO + 1 NC, 10 A 250 V AC (26.03)
- Supply voltage: AC
- Panel mount

Wiring diagram - 2 pole relay Common supply to relay coil and load L

Wiring diagram-2 pole relay Low voltage AC command circuit

26 Series - Step relays

Wiring diagram - 2 pole relay Common supply to relay coil and load with illuminated push butions

Accessory - Module for use with illuminated push buttons Type 026.00
This module is necessary when using between 1 and a maximum of 15 illuminated push buttons in the coil circuit (Each 1.5 mA max, 230 VAC . It must be connected in parallel to the coil of the relay.

Wiring diagram - 2 pole relay Low voltage DC command circuit

Appropriate accessory for 12 or 24 V DC control application

Accessories - for 12 and 24 V DC control applications

Type	$\mathbf{0 2 6 . 9 . 0 1 2}$	$\mathbf{0 2 6 . 9 . 0 2 4}$
Nominal voltage	12 V DC	24 V DC
Max temperature	$+40^{\circ} \mathrm{C}$	$+40^{\circ} \mathrm{C}$
Operating range	$(0.9 \ldots 1.1) \mathrm{U}_{\mathrm{N}}$	

27 Series - Step relays

Type 27.01

Connect up to 24 illuminated push

 buttons with the addition of module- 1 NO, 10 A 230 V AC
- Supply voltage: AC
- Panel mount

Wiring diagram - Single pole relay Common supply to relay coil and load

C \in © ((D)

Wiring diagram - single pole relay Common supply to relay coil and load with illuminated push buttons

Accessory - Module for illuminated push buttons
Type 027.00
This module is necessary if using up to a maximum of 24 illuminated push buttons (1 mA max, 230 VAC) in the switching input circuit. It must be plugged directly into the relay.

Type 27.05/06
Connect up to 24 illuminated push buttons with the addition of module

- 2 NO, 10 A 230 V AC
- Supply voltage: AC
- Panel mount

Wiring diagram - 2 pole relay Common supply to relay coil and load

C \in (CE (B) (एAM)

Wiring diagram-2 pole relay Common supply to relay coil and load with illuminated push buttons

Accessory - Module for illuminated push buttons Type 027.00
This module is necessary if using up to a maximum of 24 illuminated push buttons (1 mA max, 230 V AC) in the switching input circuit. It must be plugged directly into the relay.

(1) finder

27 Series - Step relays

Type 27.21 EVO

Connect up to 15 illuminated push buttons (without additional module)

- incorporates coil power limiter to permit continuous coil energisation
- 1 contact, 10 A 230 V AC
- Supply voltage: AC
- Panel mount

C \in PG (HAD

Type	Number of steps	Sequence	
		2°	
27.21	2	1^{1}	4

Type 27.25 EVO and 27.26 EVO Connect up to 15 illuminated push buttons (without additional module) - incorporates coil power limiter to permit continuous coil energisation

- 1 NO, 10 A 230 V AC
- Supply voltage: AC
- Panel mount

C \in © ((1)

Type	Number of steps	Sequence				
27.25	4	1°	2°	3°	4°	
27.26	3	$J^{\prime} ل^{\prime}$	I^{\prime}	4	4	

New Crono Touch Screen.

- Elegant design and slim 19 mm depth
- Easy to use and easy to program
- Calendar with automatic leap year \& daylight-saving updates
- Heating and Cooling

Ensures just the right degree of comfort...

1T. 41
Thermostat
analogue

17.31

Thermostat digital

1C. 71
Daily Programmable Weekly Programmable room thermostat room thermostat

...and easy on the eye.

Cream

White, pearl effect

Metallic Anthracite

1C Series - Programmable Room Thermostat

Type 1C.71.9.003.xxx1

Type 1C.71.9.003.xxx7

TOUCH SCREEN Programmable Room Thermostat Daily or weekly programmable versions

- SUMMER/WINTER switch
- Functions: frost protection, automatic control, manual control, holiday program, pump anti-seizure function
- Calendar with automatic leap year \& daylight-saving updates
- 1 changeover 5A-230V AC
- 3 programmable temperature thresholds
- Elegant design, slim 18 mm depth
- Supply voltage: 3 V DC (2 batteries 1.5 V DC, AAA size)

(1)	Code - Daily Prog.	Code - Weekly Prog.	Colour	
\subset	1C.71.9.003.0101	1C.71.9.003.0107	Cream	
	1C.71.9.003.0201	1C.71.9.003.0207	White, pearl effect	
-	1C.71.9.003.1101	1C.71.9.003.1107	Metallic Grey	
,	1C.71.9.003.1201	1C.71.9.003.1207	Metallic Silver	
-	1C.71.9.003.2101	1C.71.9.003.2107	Metallic Anthracite	
ᄃ	1C.71.9.003.2201	1C.71.9.003.2207	Metallic Titanium	

IT Series - Room thermostat

Type 1T.31.9.003.0000

Type 1T.31.9.003.2000
Functions: OFF (with Frost protection)/Summer/Winter

- 1 changeover 5 A 230 V AC
- Independently set temperatures for Day and Night $(+5 \ldots+37)^{\circ} \mathrm{C}$
- Supply voltage: $3 \vee$ DC (2 batteries 1.5 V DC AAA)

(1)	Code	Colour	
\subset	1T.31.9.003.0100	Cream	
-	1T.31.9.003.0200	White, pearl effect	
-	1T.31.9.003.1100	Metallic Grey	
+	1T.31.9.003.1200	Metallic Silver	
-	1T.31.9.003.2100	Metallic Anthracite	
$ᄃ$	1T.31.9.003.2200	Metallic Titanium	

(1) finder

Type 1T.41.9.003.2000

Type 1T.41.9.003.2000

Functions: OFF (with Frost protection)/Summer/Winter

- 1 changeover 5 A 230 V AC
- Temperature setting range $(+5 \ldots+30)^{\circ} \mathrm{C}$
- Selector switch: Day/Night (Setback by - $3^{\circ} \mathrm{C}$)
- Supply voltage: 3 V DC
(2 batteries 1.5 V DC AAA)

4C Series - Relay interface modules

Type 4C. 52

- $2 \mathrm{CO}, 8$ A 250 V AC
- Supply voltage: AC or DC
- 35 mm rail (EN 60715) mount

(certain relay/socket combinations)

48 Series - Relay interface modules

Type 48.52

- 2 CO, 8 A 250 V AC
- Supply voltage: AC or DC - 35 mm rail (EN 60715) mount
C
-(4.):
(certain relay/socket combinations)

58 Series - Relay interface modules

Type 58.34

- 4 CO, 7 A 250 V AC
- Supply voltage: AC or DC
- 35 mm rail (EN 60715) mount

C ϵ

(certain relay/socket combinations)

COIL

AC

C \mathbb{C}

Type 19.21.0.024.0000-Auto/Off/On output module 10 A
Feedback contact
11.2 mm width

- 1 CO, 10 A 250 V AC
- Supply voltage: AC or DC
- 35 mm rail (EN 60715) mount

19 Series - Override \& Status indicating modules

Type 19.41.0.024.0000-Override module - Auto/Off/Hand 1 feedback output contact

LED indicator

17.5 mm width

- 1 CO, 5 A 250 V AC
- Supply voltage: AC or DC
- 35 mm rail (EN 60715) mount

Type 19.42.0.024.0000-Override module - Auto/Off/Low/High
Low and High output contacts - 1 feedback output contact
LED indicator
35 mm width

- 2 NO, 5 A 250 V AC
- Supply voltage: AC or DC
- 35 mm rail (EN 60715) mount

19 Series - Override \& Status indicating modules

CE R

Type 19.50.0.024.0000-Analogue override module - Auto/Hand (0...10)V
1 feedback output contact

LED indicator

17.5 mm width

- 1 CO, 5 A 250 V AC
- Supply voltage: 24 V AC or DC
- 35 mm rail (EN 60715) mount

In the selector position A (Automatic) the $0 . .10 \mathrm{~V}$ signal at Yin is transferred through Yout, to the end process;
in the selector position H (Hand) the $0 \ldots 10 \mathrm{~V}$ value set by the module's regulator is transferred, through Yout, to the end process.

Type 19.91.9.0xx. 4000 - Power relay module 16 A
17.5 mm width

- 1 CO, 16 A 250 V AC
- Supply voltage: DC
- 35 mm rail (EN 60715) mount

7E Series - Energy meter

Type 7E. 23

- Nominal current 5 A (32 A Maximum)
- 1-phase 230 V AC
- 17.5 mm width
- 35 mm rail (EN 60715) mount
(ϵ

Accessories

Terminal cover Type 07E. 13

For the tamper-proof lead seal use 2 terminal covers.

7E Series - Energy meter

- Nominal current 10 A (65 A Maximum)
- 3-phase
- Single and Dual tariff (Day and Night)
. 70 mm width
- 35 mm rail (EN 60715) mount

C ϵ

Accessories

Terminal cover Type 07E. 16

For the tamper-proof lead seal use 4 terminal covers

7E Series - Energy meter

Type 7E. 56

- Nominal current 5 A (6 A Maximum)
- 3-phase
- Usable with current transformer up to 1,500 A
- 70 mm width
- 35 mm rail (EN 60715) mount
(ϵ

Accessories

Terminal cover Type 07E. 16

For the tamper-proof lead seal use 4 terminal covers

7E Series - Energy meter

Type 7E.12.8.230.0002

- Nominal current 10 A (25 A Maximum)
- 1-phase 230 V AC
-35 mm width
- 35 mm rail (EN 60715) mount

C ϵ

Accessories

Terminal cover Type 07E. 16

For the tamper-proof lead seal use 2 terminal covers

7E Series - Energy meter

Type 7E. 13

- Nominal current 5 A (32 A Maximum)
- 1-phase 230 V AC
-17.5 mm width
- 35 mm rail (EN 60715) mount

C ϵ
 PTB

(Physikalisch -
Technischen Bundesanstalt)

Accessories

Terminal cover Type 07E. 13

For the tamper-proof lead seal use 2 terminal covers.

Type 7E. 16

- Nominal current 10 A (65 A Maximum)
- 1-phase 230 V AC
- 35 mm width
- 35 mm rail (EN 60715) mount

C ϵ
PTB
(Physikalisch -
Technischen Bundesanstalt)

Accessories

Terminal cover Type 07E. 16

For the tamper-proof lead seal use 2 terminal covers

7E Series - Energy meter

* Gle a Gla

Type 7E.36.8.400.0000

- Nominal current 10 A (65 A Maximum)
- 3-phase
- 70 mm width
- 35 mm rail (EN 60715) mount

CE PTB

(Physikalisch -
Technischen Bundesanstalt)

Accessories

Terminal cover Type 07E. 16

For the tamper-proof lead seal use 4 terminal covers

Type 7E.36.8.400.0002

- Nominal current 10 A (65 A Maximum)
- 3-phase
- Dual tariff (Day and Night)
.70 mm width
- 35 mm rail (EN 60715) mount

CE PTB

(Physikalisch -
Technischen Bundesanstalt)

Accessories

Terminal cover Type 07E. 16

For the tamper-proof lead seal use 4 terminal covers

7P Series - Surge Protection Device

Type 7P.02.8.260.1025-SPD Type 1+2

For single phase system.

Varistor + GDT protection L-N + GDT protection N-PE.

- Visual fault and remote contact fault signalling varistor/GDT status, N-PE GDT presence
- Upside down mounting possible
- Replaceable modules
- Possibility of serial connection (V-shape)
- 35 mm rail (EN 60715) mount

T-single phase system - SPD up-stream of RCD

7P Series - Surge Protection Device

Type 7P.03.8.260.1025-SPD Type 1+2
For three phase system without Neutral (PEN conductor).
Varistor + GDT protection L1, L2, L3-PEN.

- Visual fault and remote contact
fault signalling varistor/GDT status
- Upside down mounting position
- Replaceable modules
- Possibility of serial connection (V-shape)
- 35 mm rail (EN 60715) mount

C \in B

TN-C- three phase system - SPD up-stream of RCD

Some technical features are subject to change following the introduction of new normative requirements.
Please check latest updated technical data on Finder website.

7P Series - Surge Protection Device

Type 7P.04.8.260.1025-SPD Type 1+2 For three phase system with Neutral. Varistor + GDT protection L1, L2, L3-N + spark gap protection N-PE.

- Visual fault and remote contact fault signalling varistor/GDT status, N-PE GDT presence
- Upside down mounting position
- Replaceable modules
- Wiring diagrams "V-shape" example page 109
- 35 mm rail (EN 60715) mount

Some technical features are subject to change following the introduction of new normative requirements.
Please check latest updated technical data on Finder website.

7P Series - Surge Protection Device

TT-three phase system - SPD up-stream of RCD
Wiring diagrams "V-shape" (fuse max = 125 A)

Serie 7P - Scaricatori di sovratensione

Type 7P.05.8.260.1025-SPD Type 1+2 For three phase system with Neutral. Varistor + GDT protection L1, L2, L3-N + varistor + GDT protection N-PE.

- Visual fault and remote contact fault signalling varistor/GDT status
- Upside down mounting position
- Replaceable modules
- Possibility of serial connection (V-shape)
- Montaggio su barra 35 mm (EN 60715)

C \in

T - TN-S- three phase system - SPD up-stream of RCD

7P Series - Surge Protection Device

Type 7P.21.8.275.1020-SPD Type 2

Varistor protection L/N ($\underset{\cong}{\perp})-\underset{\cong}{\perp}(\mathrm{L} / \mathrm{N})$

- Surge arrester suitable for 230 V system/applications
- Single phase systems
- Replaceable varistor module
- Visual and remote signalling of varistor status
- 35 mm rail (EN 60715) mount

Note: suggested RCD type S

7P Series - Surge Protection Device

- Suitable for 230 V system/applications
- Single phase systems
- Visual indication of varistor status Healthy/Replace
- Replaceable modules
- Visual and remote signalling of varistor status
- 35 mm rail (EN 60715) mount
CE PG

Some technical features are subject to change following the introduction of new normative requirements. Please check latest updated technical data on Finder website.

T-single phase system -

Type 7P.12.8.275.1012
SPD Type 1+2 "Low Up System"
Varistor protection L-N + spark gap protection N-PE

Type 7P.22.8.275.1020-SPD Type 2
Varistor protection L-N

+ spark-gap protection N-PE

Type 7P.13.8.275.1012-SPD Type 1+2 Varistor protection L1, L2, L3-PEN

Type 7P.23.8.275.1020-SPD Type 2

Varistor protection L1, L2, L3

- Surge arrester suitable for $230 / 400 \mathrm{~V}$ system/applications
- Three-phase systems
- Visual indication of varistor status .

Healthy/Replace

- Replaceable varistor modules
- Visual and remote signalling of varistor status - 35 mm rail (EN 60715) mount

C \in

TN-C three phase system -
SPD up-stream of overcurrent protection

Some technical features are subject to change following the introduction of new normative requirements.
Please check latest updated technical data on Finder website.

7P Series - Surge Protection Device

Type 7P.14.8.275.1012
SPD Type 1+2 "Low Up System"
Varistor protection L1, L2, L3-N

+ Spark Gap protection N-PE

Type 7P.24.8.275.1020-SPD Type 2

Not replaceable high discharge current spark gap
Varistor protection L1, L2, L3-N + spark-gap protection N-PE Replaceable modules

- Surge arrester suitable for 230/400 V system/applications
- Three-phase systems
- Visual indication of varistor status Healthy/Replace
- Replaceable varistor modules
- Visual and remote signalling of varistor status 35 mm rail (EN 60715) mount

C \in

Some technical features are subject to change following the introduction of new normative requirements. Please check latest updated technical data on Finder website.

Type 7P.15.8.275.1012-SPD Type 1+2
Varistor protection L1, L2, L3,N-PE

Type 7P.25.8.275. 1020 - SPD Type 2
Varistor protection L1, L2, L3-N

+ varistor protection N-PE
- Surge arrester suitable for 230/400 V system/applications
- Three-phase systems
- Visual indication of varistor status -

Healthy/Replace

- Replaceable varistor modules
- Visual and remote signalling of varistor status
- 35 mm rail (EN 60715) mount

C © ©

TN-S three phase system -
SPD down-stream of overcurrent protection

7P Series - Surge Protection Device

Type 7P.23.9.750. 1020
SPD Type 2
For protection on DC side (750 V) of systems in photovoltaic applications*

- Replaceable modules
- Visual and remote signalling of varistor status
.35 mm rail (EN 60715) mount

Type 7P.23.9.000.1015
SPD Type 2
For protection on DC side (1020 V) of systems in photovoltaic applications*

- Replaceable modules
- Visual and remote signalling of varistor status
- 35 mm rail (EN 60715) mount

Type 7P.23.9.200.1015
SPD Type 2
For protection on DC side (1200 V) of systems in photovoltaic applications*

- Replaceable modules
- Visual and remote signalling
of varistor status
- 35 mm rail (EN 60715) mount

[^1]
7P Series - Surge Protection Device

Installation examples - photovoltaic

Some technical features are subject to change following
the introduction of new normative requirements.
Please check latest updated technical data on Finder website.

7P Series - Surge Protection Device

Type 7P.26.9.420. 1020

SPD Type 2

For protection on DC side (420 V) of systems in photovoltaic applications*

- Replaceable modules
- Visual and remote signalling of varistor status
- 35 mm rail (EN 60715) mount

Installation examples - photovoltaic

Type 7P.26.9.000.1015

SPD Type 2

For protection on DC side (1020 V) of
systems in photovoltaic applications*
For protection on DC side (1020 V) of
systems in photovoltaic applications*

- Replaceable modules
- Visual and remote signalling
of varistor status
35 mm rail (EN 60715) mount
of varistor status
.35 mm rail (EN 60715) mount

[^2]
7P Series - Surge Protection Device

Type 7P.32.8.275.2003

SPD Type 3

Provides easy additional surge protection
for existing 230 V sockets

- Protects electric and electronic equipment against pulse overvoltage (example: TV, Hi-Fi, PC ...)
- Acoustical (buzzing) signalling of varistor fault
- Combined varistor + spark-gap protection
(avoiding earth leakage current)
- Small size
- For incorporation within socket outlets

CE 厄

TT or TN-S single phase system incorporated in socket outlet

[^3]
7P Series - Surge Protection Device

Type 7P.37.8.275.1003-SPD Type 3 - For TT and TN-S system (with Neutral)

- L-N/N-PE protection
- Permits serial connection for optimized load protection up to 16 A
- Remote signaling of varistor status by integral change-over relay contact
- 35 mm rail (EN 60715) mount
Π or TN-S single phase system SPD down-stream of RCD - Serial connection

TT or TN-S single phase system
SPD down-stream of RCD
Serial connection + BUS line

TT, TN-S single phase:
parallel connection

F1>16AgL/gG

$$
\Downarrow
$$

$\mathrm{F} 2=16 \mathrm{AgL} / \mathrm{gG}$

70 Series - Line monitoring relay

Type 70.11 - Single-phase ($220 . . .240 \mathrm{~V}$) voltage monitoring:

- Undervoltage
- Overvoltage
- Window mode (overvoltage + undervoltage)
- Voltage fault memory selectable
- 1 CO, 10 A 250 V AC
- Supply voltage: AC
- 35 mm rail (EN 60715) mount

Front view: function selector and regulators

70 Series - Line monitoring relay

Type 70.31 - Three-phase ($380 . . .415 \mathrm{~V}$) voltage monitoring:

- Undervoltage
- Overvoltage
- 1 CO, 6 A 250 V AC
- Window mode (overvoltage + undervoltage)
- Supply voltage: AC
- Voltage fault memory selectable
- 35 mm rail (EN 60715) mount

CE CS

- Phase loss
- Phase rotation

Front view: function selector and regulators

70 Series - Line monitoring relay

Type 70.41 - Three-phase ($380 \ldots 415 \mathrm{~V}$, with or without neutral) voltage monitoring:

- Window mode (overvoltage + undervoltage)
- Phase loss
- Phase rotation
- Asymmetry
- Neutral loss selectable
- 1 CO, 6 A 250 V AC
- Supply voltage: AC
- 35 mm rail (EN 60715) mount

70 Series - Line monitoring relay

Type 70.61

Three-phase (208... 480 V) voltage monitoring:

- Phase loss
- Phase rotation
- 1 CO, 6 A 250 V AC
- Supply voltage: AC
- 35 mm rail (EN 60715) mount

CE ©C c) ${ }^{\circ}$

70 Series - Line monitoring relay

Type 70.62

Three-phase ($208 . . .480 \mathrm{~V}$) voltage monitoring:

- Phase loss
- Phase rotation
- $2 \mathrm{CO}, 8$ A 250 V AC
- Supply voltage: AC
-35 mm rail (EN 60715) mount
C ϵ

72 Series - Level control relays for conductive liquids

Type 72.01 - Adjustable sensitivity

- 1 CO, 16 A 250 V AC
- Supply voltage: AC or DC
- 35 mm rail (EN 60715) mount

($\in \mathbb{C}$ © :(LU)

Functions

```
FL = Level control by Filling, Long (7 sec) run-on delay.
EL = Level control by Emptying, Long (7 sec) run-on delay.
FS = Level control by Filling, Short (0.5sec) run-on delay.
ES = Level control by Emptying, Short (0.5sec) run-on delay.
```

Wiring diagram with 3 electrodes

72 Series - Level control relays for conductive liquids

Type 72.01-Adjustable sensitivity

- 1 CO, 16 A 250 V AC
- Supply voltage: AC or DC
- 35 mm rail (EN 60715) mount

C © © : ©

72 Series - Level control relays for conductive liquids

Type 72.11-Fixed sensitivity

- 1 CO, 16 A 250 V AC
- Supply voltage: AC or DC
- 35 mm rail (EN 60715) mount

C \in © : ©id

Functions

```
F = Level control by Filling, Z1-Z2 open.
        Run-on time fixed at 1 sec.
E = Level control by Emptying, Z1-Z2 linked.
    Run-on time fixed at 1 sec.
```

Wiring diagram with 3 electrodes

72 Series - Level control relays for conductive liquids

Type 72.11-Fixed sensitivity

- 1 CO, 16 A 250 V AC
- Supply voltage: AC or DC
- 35 mm rail (EN 60715) mount

C © © : ©

Functions

```
F = Level control by Filling, Z1-Z2 open.
    Run-on time fixed at 1 sec.
E = Level control by Emptying, Z1-Z2 linked.
    Run-on time fixed at 1 sec.
```


72 Series - Level control relays for conductive liquids

Filling functions

Example with 3 electrodes.

Example with 2 electrodes.

72 Series - Level control relays for conductive liquids

Emptying functions

Example with 3 electrodes.

Example with 2 electrodes.

Accessories for level control relays 72 Series

Type 072.01.06 - Cable length: $6 \mathrm{~m}\left(1.5 \mathrm{~mm}^{2}\right)$
Type 072.01.15-Cable length: $15 \mathrm{~m}\left(1.5 \mathrm{~mm}^{2}\right)$
Suspended electrode for conductive liquids, complete with cable.
Suitable for level monitoring in wells and reservoirs not under pressure. All materials used are compatible with food processing applications.

Tipo 072.31
Suspended electrode

Type 072.02.06
Cable length (blue colour): $6 \mathrm{~m}\left(1.5 \mathrm{~mm}^{2}\right.$)
Electrode for swimming pools with
high levels of chlorine, or in salt-water pools with high levels of salinity.

Type 072.11 - Floor water sensor, designed for the detection and reporting of the presence of floor surface water.

Type 072.51 - Electrode holder with two pole connector, one connected directly to the electrode and the second connected to the grounded installation thread. Suitable for metal tank with $\mathrm{G} 3 / 8^{\prime \prime}$ linkage.

Type 072.53
Electrode holder with three poles

Type 072.500
Type 072.501
Electrode.
500 mm long.

Level control relays for conductive liquids

Priority change relay
Type 72.42, Special relay for alternating loads, for applications with pumps, compressors, air conditioning or refrigeration units.

Type 72.42 - Monitoring relays

Type 72.42

- 2 independent NO output, 12 A 250 V AC
- Supply voltage: ($110 \ldots 240$) V and $24 \mathrm{~V} \mathrm{AC} / D C$
- 35 mm rail (EN 60715) mount

C \in

(MI) Outputs alternate on successive applications of supply voltage

- Application of the supply voltage to A1-A2 forces just one output contact to close, but the contact that closes will alternate between 11-14 and 21-24 on each successive application of the supply - ensuring even wear across both motors.
- The other output contact can be forced closed by the closure of either S1 or S2-but to limit high current surges the other motor cannot start within T seconds of the first motor.

Type 72.42 - Monitoring relays

(ME) Outputs alternate according to control signal

- The supply voltage is permanently applied to A1-A2.

When closed, S1 forces just one output contact to close. The contact that closes will alternate between 11-14 and 21-24 on each successive S1 closure - ensuring even wear across both motors.

- If closed, S2 forces both output contacts to close (irrespective of S1). However, to limit high current surges, both motors cannot start within T seconds of each other.

(M2) Output 2 (21-24) only
- Supply permanently applied to A1-A2.
- Closure of either S1 or S2 will close output contact 2 (21-24). Use when load 1 (11-14) is out of service.

Type 72.A1 - Float switch

CE Type 72.A1

- Float switch with 2 watertight chambers, - 1 CO 20 A 250 V AC for plumbing pumps and grey water systems - Protection degree: IP 68
- Counterweight $(300 \mathrm{gr})$ with cable grip, included

When black and brown wires are used, the circuit opens when the float is down and closes when the float in up. In this case the blue/grey wire must be insulated.

Filling
function

When black and blue/grey wires are used, the circuit opens when the float is up and closes when the float in down.
In this case the brown wire must be insulated.

Type 72.B1 - Float swith

C

Type 72.B1

- Float switch with 3 watertight chambers, for dirty water systems, drainage plants and pumping stations
- Supplied with fixing kit

Emptying function

When black and brown wires are used, the circuit opens when the float is down and closes when the float in up. In this case the blue/grey wire must be insulated.

- 1 CO 20 A 250 V AC
- Protection degree: IP 68

When black and blue/grey wires are used, the circuit opens when the float is up and closes when the float in down.
In this case the brown wire must be insulated.

77 Series - Modular Solid State Relay

Type 77.01
17.5 mm width

- 1 NO 5 A
- Supply voltage: AC or DC
- 35 mm rail (EN 60715) mount

C \in

Example of single-phase connection

Example of three-phase connection
(with $3 \times 77.01 .8 .230 .8051$)

78 Series - Switch mode power supplies

Type 78.12... 2400
24 V DC, 12 W output

Type 78.12... 1200
12 V DC, 12 W output

Range of modular DC power supplies

- Supply voltage: ($110 \ldots 240$)V AC, 220 V DC not polarized
- 35 mm rail (EN 60715) mount
(ϵ

78 Series - Switch mode power supplies

Type 78.36

Range of modular DC power supplies

- 24 V DC, 36 W output
- Supply voltage: (110...240)V AC, 220 V DC not polarized
- 35 mm rail (EN 60715) mount

C ϵ

78 Series - Switch mode power supplies

Type 78.50

Uscita 12 V DC, 50 W

Type 78.60
Uscita 24 V DC, 60 W

Range of modular DC power supplies

- Supply voltage: (110...240)V AC

220 V DC not polarized

- 35 mm rail (EN 60715) mount

C ϵ

80 Series - Modular timers

Type 80.01/11/21/61

- 1 CO, 16 A 250 V AC
- 1 CO, 8 A 250 V AC (80.61 only)
- Supply voltage: AC or DC
- 35 mm rail (EN 60715) mount

C \in © © 4 ©

Functions

$\mathrm{U}=$ Supply voltage $\quad{ }^{-}=$Output contact

Type 80.01, 80.11

(Al) On-delay

Apply power to timer. Output contacts transfer after preset time has elapsed. Reset occurs when power is removed.

Type 80.01, 80.21

(DI) Interval

Apply power to timer. Output contacts transfer immediately. After the preset time has elapsed, contacts reset.

Type 80.01

(SW) Symmetrical flasher (starting pulse on)

Apply power to timer. Output contacts transfer immediately and cycle between ON and OFF for as long as power is applied. The ratio is $1: 1$ (time on $=$ time off).

(BI) Power off-delay (True off-delay)

Apply power to timer (minimum 300ms). Output contacts transfer immediately. Removal of power initiates the preset delay, after which time the output contacts reset.

80 Series - Modular timers

Type 80.01/41/91

- 1 CO, 16 A 250 V AC
- Supply voltage: AC or DC
- 35 mm rail (EN 60715) mount

Functions

$U=$ Supply voltage $\quad S=$ External Start \quad Output contact

Type 80.01, 80.41

(CE) On- and off-delay with control signal

Power is permenently applied to the timer. Closing the Signal Switch (S) initiates the preset delay, after which time the output contacts transfer. Opening the Signal switch initiates the same preset delay, after which time the output contacts reset.

(DE) Interval with control signal on

Power is permenently applied to the timer.
On momentary or maintained closure of Signal Switch (S), the output contacts transfer, and remain so for the duration of the preset delay, after which they reset.

(BE) Off-delay with control signal

Power is permenently applied to the timer. The output contacts transfer immediately on closure of the Signal Switch (S). Opening the Signal Switch initiates the preset delay, after which time the output contacts reset.

Type 80.91

(LE) Asymmetrical flasher (starting pulse on) with control signal

Power is permenently applied to the timer.
Closing Signal Switch (S) causes the output contacts to transfer immediately and cycle between ON (T1) and OFF (T2), until opened.

80 Series - Modular timers (SST)

Type 80.71

Multi-function \& Multi-voltage Solid State output timer

- 1 NO, 1 A (24...240)V AC/DC
- Supply voltage: AC or DC

35 mm rail (EN 60715) mount

CEPG

Timing function initiated by the application of the supply voltage

Timing function initiated by start signal to terminal B1

Functions

(Al) On-delay
Apply power to timer. Output contacts transfer after preset
time has elapsed. Reset occurs when power is removed.
(BE) Off-delay with control signal
Power is permenently applied to the timer. The output contacts transfer
immediately on closure of the Signal Switch (S). Opening the Signal Switch
initiates the preset delay, after which time the output contacts reset.

80 Series - Modular timers

Type 80.91

Asymmetrical recycling timer - ON start

- 1 CO, 16 A 250 V AC
- Supply voltage: AC or DC
- 35 mm rail (EN 60715) mount

C \in © (1T) $\mathbb{C B}$

Timing function initiated by the application of supply voltage

Functions
$\underline{U}=$ Supply voltage \quad - Output contact

(LI) Asymmetrical flasher (starting pulse on)

Apply power to timer. Output contacts transfer immediately and cycle between ON and OFF for as long as power is applied.
The ON (T_{1}) and OFF (T_{2}) times are independently adjustable.

Type 80.82

Star-Delta timer

- 2 NO, 6 A 250 V AC
- Supply voltage: AC or DC
.35 mm rail (EN 60715) mount

(\in © © 1 us

Functions
$\mathrm{U}=$ Supply voltage

(SD) Star-delta
Apply power to timer. The star contact (λ) closes immediately. After preset delay has elapsed the star contact (λ) resets. After a further transfer time variable from ($0.05 \ldots 1$)s the delta contact (Δ) closes and remains in that position, until reset on power off.

Timing function initiated by the application of supply voltage

81 Series - Modular timers

Type 81.01

Multi-function and multi-voltage timer

- 1 CO, 16 A 250 V AC
- Supply voltage: AC or DC
- 35 mm rail (EN 60715) mount

C ϵ

Wiring diagram
(Supply START)

Wiring diagram
(Signal START)

Time range	(0.1...1) ${ }^{\text {s }}$	(1...10)s	(10...60)s	(1...10)min	(10...60) min	(1...10)
setting	1	1	1			
	2	2	2	2	2	2
	3	3	3	3	3	3
	4	4	$4 \square$	$4 \square$	$4 \square$	4
	5	5				5
	6					

NOTE: time range and function must be set before energising the timer.

Supply START; ON delay function
Closing the external reset switch immediately resets the timer. Opening the reset switch re-initiates the timing function.

Signal START; ON pulse function.
Closing the external reset switch terminates the interval time and resets the timer. To re-start, it is necessary to open the reset switch, before closing the signal START contact.

81 Series - Modular timers

Application of the supply voltage initiates timing
Remote Start contact initiates timing

81 Series - Modular timers

Functions

(Al) On-delay
Apply power to timer. Output contacts transfer after preset
time has elapsed. Reset occurs when power is removed.
(DI) Interval
Apply power to timer. Output contacts transfer immediately.
After the preset time has elapsed, contacts reset.

FINDER SpA
Via Drubiaglio, 14
10040 ALMESE (TO) - ITALY
Tel. +39 0119346211
Fax +39 0119359079
export@findernet.com

www.findernet.com

on-line catalogue

[^0]: 1 = Functions selector
 2 = Time delay adjustment potentiometer
 3 = LED

[^1]: Type 7P.03.9.000.1012
 SPD Type 1+2
 For protection on DC side (1000 V) of systems in photovoltaic applications*

 - For systems with LPS
 - Replaceable modules
 - Visual and remote signalling of varistor status
 - 35 mm rail (EN 60715) mount

[^2]: Some technical features are subject to change following
 the introduction of new normative requirements.
 Please check latest updated technical data on Finder website.

[^3]: Some technical features are subject to change following the introduction of new normative requirements.
 Please check latest updated technical data on Finder website.

