Lapp Cable Guide

U.I. Lapp GmbH

Schulze-Delitzsch-Straße 25 70565 Stuttgart, Germany Tel. +49(0)711/78 38-01 Fax +49(0)711/78 38-26 40 www.lappgroup.com

Contents

The Lapp Group: At Your Service	2
Brand quality from Stuttgart	4
The Lapp Group - The System Supplier	8
An overview of our fields of application	10
Cable finding made easy	12
Bespoke cable systems	13
We put quality through a tough test	14
Product information	
ÖLFLEX® Power- and control cables	15
UNITRONIC [®] Data communication systems	19
ETHERLINE [®] Data communication systems	
for ETHERNET-Technology	27
HITRONIC [®] Optical transmission systems	31
EPIC [®] Industrial connectors	39
SKINTOP [®] Cable glands	51
SILVYN [®] Protective cable conduit- and	
cable carrier systems	57
FLEXIMARK [®] Cable marking products	65
Cable Accessories	68
Introduction to Cable Engineering	72
The Fundamentals of Cable Engineering	73
Technical Tables	80
Glossary	177
Key words	303
Safety instructions	316

Foreword

We have developed the Lapp Cable Guide to help make your work easier when

it comes to the day-to-day handling of our products. It is a comprehensive reference work for using Lapp cables, connectors and accessories.

The product information provides detailed descriptions of the relevant applications, construction data and special features. The Technical Tables include information about markings, load carrying capacity, chemical resistance and protection systems.

Finally, you will find an extensive technical glossary containing all the most important terms used in electrical engineering. The Lapp Cable Guide is a clearly laid out source of information for industry specialists, students, trainees and anyone else with an interest in this area.

A. Jus

Andreas Lapp

The Lapp Group: At Your Service

In 1957, the company's founder Oskar Lapp developed ÖLFLEX[®], the world's first industrially produced control cable. Today, 2,800 employees contribute their dedication, knowledge and ideas to the Lapp Group every day.

Our range includes cables, accessories, cable handling systems and pre-assembled cables. Based on our coordinated systems, our range of products and services has been continuously expanded over the years. In order to offer you optimum quality, our products are constantly being tested in Lapp's own test centres.

The Lapp Group offers a unique range of products, services and manufacturing expertise worldwide.

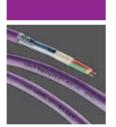
Brand quality from Stuttgart

ÖLFLEX®

Power- and control cables

The world's first brand cable is available in the most varied of versions to match maximum requirements.

Key features: Oil-resistant, flexible and available to match almost any requirement or environmental condition – also free of halogens.


Fields of application: Universal application. Special versions also available for the renewable energy sector.

UNITRONIC®

Data communication systems

The ideal brand for fast, trend-setting and reliable data transfer. **Key features:** UNITRONIC[®] are not only data lines, but also bus lines, which together with active sensor/ actuator modules or gateways provide a perfect system for automation.

Fields of application: Measurement, control, regulation, bus or LAN networks.

ETHERLINE®

Data communication systems for ETHERNET-Technology

The brands for network solutions, safety systems and firewalls in the industrial networking sector.

Key features: Integral system consisting of hardware (switches, routers, cables, plugs etc.), software, consulting, network design and support.

Fields of application: Factory automation.

HITRONIC®

Optical transmission systems

The brand for split-second, faultfree, intercept-free data transport. **Key features:** The HITRONIC[®] product range includes fibre optic cables in the most varied of versions, along with suitable accessories such as splice boxes, wall distributors or couplings.

Fields of application: Office and industrial sector.

Brand quality from Stuttgart

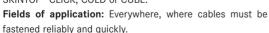
EPIC[®]

Industrial connectors

The brand for strong and reliable connections.

Key features: Robust square and circular connectors. Flexible system consisting of housings, inserts, contacts and accessories – for every requirement, the tailor-made solution. Similarly, EPIC[®]

SOLAR plugs for photovoltaics are also part of the extensive product range.


Fields of application: Mechanical and systems engineering, drive technology and energy production.

SKINTOP®

Cable glands

The brand for multipurpose cable entries in line with the following: quickly fastened, centred and hermetically sealed.

Key features: Large clamping areas, optimum strain reliefs, the most diverse of versions such as SKINTOP® CLICK, COLD or CUBE.

SILVYN®

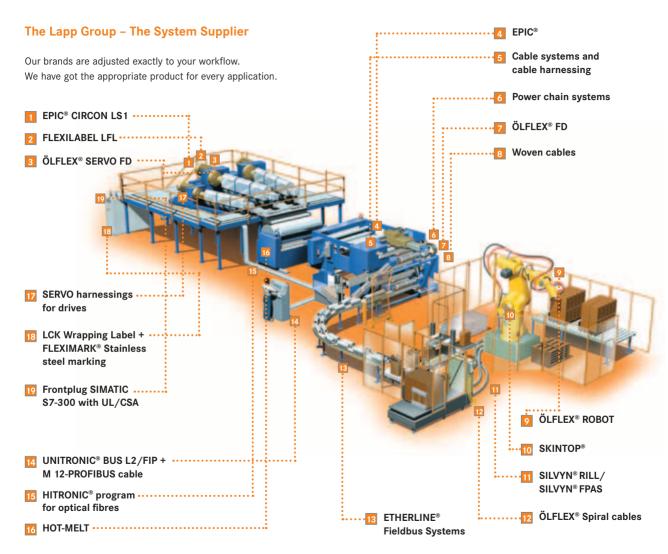
Protective cable conduitand cable carrier systems

The brand for all-round cable protection.

Key features: The product range includes SILVYN[®] cable protection hoses for perfect protection against mechanical and chemical loads, along with SILVYN[®] CHAIN

energy supply chains for highly-dynamic applications.

Fields of application: Everywhere that cables have to be additionally protected or routed.


FLEXIMARK[®] Cable marking products

The brand for permanent, clearlyarranged cable markings.

Key features: Comprehensive range – from manual labelling solutions onto digital identification. Withstands high chemical, thermal and mechanical loads.

Fields of application: All cable, single cores, control cabinets.

8

An overview of our fields of application

Mechanical and systems engineering

As suppliers, this is where we are traditionally at home. Ever since we started out, our competence has concentrated on providing solutions for machines and systems. There can hardly be an industrial application anywhere that we have not already equipped in some way:

- Automation and network engineering
- Measurement and control technology
- Electrical installation technology
- Chemical and pharmaceutical industries
- · Oil and gas industry
- · Maritime and aeronautics
- Food & beverage
- Lifts & handling
- · Commercial vehicles
- Robotics
- Lighting and stage technology

Power generation

Wherever power is generated, cables are required to take it

to the users. The efficient distribution of electrical energy is a field known only too well to us. This is why Lapp has been a highly sought after partner for decades to the energy sector.

Renewable energies

We recognised at an early stage the significance of green energies. Bearing this in mind, we have built up a special proficiency in this area and developed product ranges for our customers. This is why we are accepted as a supplier on equal footing. Be it a wind turbine installation, solar farm or photovoltaic installation for "domestic usage", we are involved.

e-Mobility

Tomorrow's cars will fill up with electricity. And we are already in the pole position for this future market. We supply special system solutions for hybrid vehicles from both German and American manufacturers.

Cable finding made easy

In our online-catalogue you can choose from more than 40,000 products. This poses the query: what can we offer you in addition to that, to ensure that you don't get your wires crossed when looking for cables or plugs?

Cable Finder

Make short work of searching for cables. You can configure a product online to suit your own requirements, by searching through all the cables, lines and optical fibres available in the online-catalogue as "material sold by the metre". "NEW filter" presents you with an overview of all the innovations from the past twelve months.

www.lappgroup.com/cablefinder

Connector Finder

Configure your EPIC[®] square, circular or solar plugs online, with only a few clicks of the mouse. Enter the technical parameters and then select the suitable plug socket – the ideal housing package is then automatically suggested. Choose it, look for the matching counterpart, done!

www.lappgroup.com/connectorfinder

CAD Product Catalogue

Design time costs money. Our CAD Product Catalogue enables developers and planners to save both. You can import all the relevant CAD data (e.g. cover sizes, clamping areas, article numbers, etc.) for SKINTOP® cable glands, EPIC® industrial connectors and SILVYN® protective cable conduit systems in your CAD system. We can provide you with all the customary output formats.

www.lappgroup.com/3d-data

Bespoke cable systems

The more complex the application, the more customised cables and lines have to be. When it comes to customerspecific cable systems and spiral cables, Lapp Systems is your specialist. We offer a complete one-stop automation solution for everything to do with cables and cords. from development through logistics to production. In Germany for instance, you will find us at four major regional locations: Cologne, Dresden, and Stuttgart.

System solutions for:

- Mechanical and plant engineering and construction
- Telecommunications
- Medical electronics
- Transport
- · Elevators and platforms

Our product offering:

- Customised cable systems
- ÖLFLEX[®] Spiral cables made to order
- Pre-assembled cable carrier systems
- · Woven cables
- Pre-assembled servo line systems
- Spiralised conduits with single cores and/or wires
- Spiral cable for commercial vehicles
- Pre-assembled HITRONIC[®] fibre optic cables

We put quality through a tough test

Multimillion bending cycles at maximum speeds and minimum bending radii. This is only one of many tests that a highly-flexible line has to withstand to be accepted into our standard product range.

Next to what in part are bruteforce tests and stringent endurance tests, radiological methods are also used. For example, the special X-ray method EDX, with which the mineral content of human bone tissue is measured. We use EDX to trace any possible toxic substances or RoHS substances in cables and other products.

With this in mind: You are very welcome to put your own products through their paces in our trial and test centre.

ÖLFLEX[®] Power- and control cables

ÖLFLEX®

ÖLFLEX[®] CLASSIC 100/110

ÖLFLEX®

The Power and Control Cable with coloured cores Special Lapp PVC Compound P8/1

LAPP RABBL STUTIONT OLPLEX CLASSIC 108 15

LANY KARDE STUTIONY DEPLEY CLASSES INT. 1998 Non-1010 12

The Power and Control Cable with numbered cores Special Lapp PVC Compound P8/1

Application range

- Plant engineering and construction Industrial machinery Air conditioning installations
 Power station
- Fixed installation as well as occasional flexing at free, non-continuously recurring movement without tensile load
- Dry or damp interiors under medium mechanical load conditions

Product features

- Flame retardant according to IEC 60332-1-2
- Good chemical resistance see Appendix T1

ÖLFLEX[®] CLASSIC H halogen-free

Application range

- Public buildings
- · Airport, railway station
- Plant engineering
 and construction
- · Industrial machinery
- Air conditioning installations
- Particularly where human and animal life as well as valuable property are exposed to high risk of fire hazards

Shielded versions:

 In EMI critical environment (electromagnetic interference)

Product features

- Flame retardant according to IEC 60332-1-2 or IEC 60332-2-3-24
- Halogen-free according to IEC 60754-1 (amount of halogen acid gas) Corrosiveness of combustion gases according to IEC 60754-2 (degree of acidity)
- Flexible up to -30°C

Shielded versions:

 High coverage degree of the screen low transfer impedance (max. 250 Ω/ km at 30 MHz)

Photographs are not to scale and do not represent detailed images of the respective products.

ÖLFLEX[®] HEAT 180 SiHF

ÖLFLEX®

Silicone cables with high temperature range -50° C up to $+180^{\circ}$ C

LARY MARE STUTION OLFLER NEW IN DIE

UNITRONIC[®] Data communication systems

ÖLFLEX® STATIC SC black

Single core for fixed, unprotected installation UV-resistant, double insulated

LAPP KABEL STURGART OLFLEKT STATIC SC black (4

Cable for sensor/ actuator components

(€ ¶\

Data transmission cables to connect to M8, M12 connectors Combination cables to connect sensor/actuator distribution boxes

LAPP KAREL BTUTTURE UNITIONS: SERVICE

UNITRONIC® 100

Data cables low frequency

LAPP KAREL STUTGART UNITRONIC-FD

LAPP KAREL STUDDATE UNITED HIG FO. CY

UNITRONIC® 100 CY

LARP KARES MUTGARE UNITRONIC 100

Application range

UNITRONIC®

These control and signal cables are used in the milliampere range for computer systems, electronic control equipment, office machines, scales etc. and wherever the thinnest possible control cables are required.

Product features **UNITRONIC® 100**

- · Robust, flexible and resistant outer sheath
- Small external diameter despite high number of cores
- Flame retardant according to IEC 60332-1-2

UNITRONIC® 100 CY

- · Robust, flexible and resistant outer sheath
- Small external diameter despite high number of cores
- Cable similar to UNITRONIC® 100, but with copper braid
- · Flame retardant according to IEC 60332-1-2

UNITRONIC® FD CY

Application range

- Automated production processes require data transmission cables of ever more flexibility and durability
- UNITRONIC[®] ED series cables are especially suited for power chain use

Product features

- The PVC outer sheath prevents mutual adhesion between several cables in the power chain
- · Flame retardant according to IEC 60332-1-2
- · Please observe the Installation Guidelines in Table T3.

Photographs are not to scale and do not represent detailed images of the respective products.

20

UNITRONIC® DeviceNet

Highly flexible and UL/CSA approved

MITTICHIC BUS Designified TREEK Cashie

Application range

UNITRONIC®

 DeviceNet[™] connects industrial devices e. g. limit switches, photoelectric switches, variable frequency drives, valve islands, motor starters, PLCs, etc.

Product features

- Based on proven CAN (Controller Area Network) technology.
- Permissible cable lengths vary with the data rate and the cable thickness
- Further details: see Data Sheet

UNITRONIC® BUS CAN

Application range UNITRONIC[®] BUS CAN

Stationary application

UNITRONIC® BUS CAN FD P

 For highly flexible applications

Product features

- Maximum bit rate:
- 1 Mbit/s for 40 m
- segment length
- Larger conductor crosssection necessary with increasing length
- Flame retardant according to IEC 60332-1-2

Photographs are not to scale and do not represent detailed images of the respective products.

UNITRONIC® BUS ASI

LAPP KAREL STUTIONET UNTRONC. BUS AND

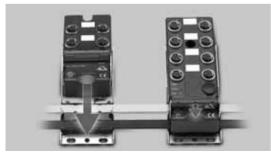
LAPP KAREL STUTIANT UNITIONIC BUS ASI

Application range

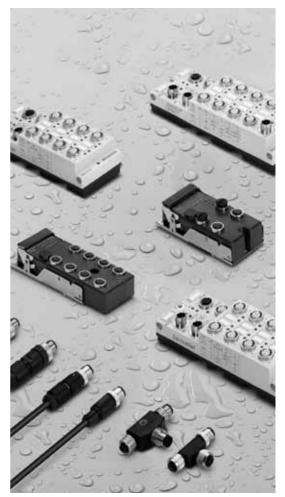
- Communication at Sensor/Actuator level
- UNITRONIC[®] Fieldbus sensor-/actuator wiring requirements
- Fixed installation as well as occasional flexing at free, non-continuously recurring movement without tensile load
- PUR version has an oil resistant outer sheath for use in industrial environments (e. g. wet areas in automotive industry, processing centres, also in connection with coolants/ lubricants) which are mixed with water.

Product features

- Data and energy are transmitted both via an un-screened, geometrically coded two-core flat cable (protection against polarity reversal).
- The conductor is contacted by "piercing technology" within the ASI-modules.
- Connection of sensors to the ASI module (coupling module) is carried out using round cables (connection cables).


UNITRONIC®

22


Fieldbus Systems

Photographs are not to scale and do not represent detailed images of the respective products.

Photographs are not to scale and do not represent detailed images of the respective products.

Current information www.lappgroup.com/products

UNITRONIC® BUS PB

Application range

UNITRONIC®

- For stationary installation of Bus Systems
- Maximal electromagnetic screening
- Dry and damp indoors

Product features

- These bus cables can be used for PROFIBUS-DP as well as for PROFIBUS-FMS and FIP
- The stated bit rates allow the following cable lengths (maximum) according of PROFIBUS User Organisation of one bus segment (Type A cable, PROFIBIS-DP):
 93.75 kbit/s = 1200 m
 187.5 kbit/s = 1000 m
 500 kbit/s = 400 m
 1.5 Mbit/s = 200 m
 12.0 Mbit/s = 100 m

ETHERLINE[®] Data communication systems for ETHERNET-Technology

ETHERLINE® 2-pairs CAT.5/5e

Benefits

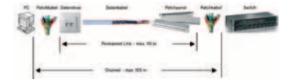
ETHERLINE®

• ETHERNET with the globally accepted TCP/IP protocol will most probably either provide a connection to the established "Fieldbus World" or the Sensor-Actuator level. Either via a gateway to the "Fieldbus World" or straight through down wards to the lowest com munication level. The transmission rates are presently either 10 Mbit/s (ETHERNET) or at least 100 Mbit/s = LAN CAT.5

requirements (Fast Ether-

net = Industrial Ethernet)

respectively CAT.6a or


CAT.7 requirements.

- With regard to transmission rates, the "ETHERNET world" is cut into:
- ETHERNET = 10 Mbit/s
- FAST ETHERNET = 100 Mbit/s
- GIGABIT ETHERNET = 1000 Mbit/s

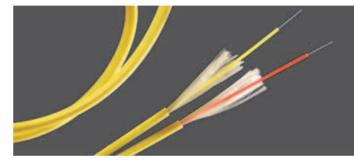
Product features

- In order to reach 100 m link length (like in the office area acc. to ISO 11801) for flexible and highly flexible cable types a cross section of AWG22 is necessary.
- All ETHERLINE[®] cables with a cross section of AWG22 are PROFINET[®] compliant.

Structured cabling

If a channel is continuously installed with CAT.5e components, the cabling is according to class E. So far only one component (e.g. patch cable) does not fulfill CAT.5e, the whole system is not conform to class E anymore!

Application classes for copper cabling (100 Ohms)


Application class	Category	Frequency	Service
Class A	-	up to 100 kHz	Telephone, ISDN
Class B	-	up to 1 MHz	Telephone, ISDN
Class C	CAT.3	up to 16 MHz	Telephone, ISDN, Token Ring, Ethernet
Class D	CAT.5	up to 100 MHz	10/100 Base-T
Class E	CAT.5e	up to 125 MHz	10/100/1000 Base-T
-	CAT.6	up to 250 MHz	10/100/1000 Base-T
Class Ea	CAT.6a	up to 500 MHz	10/100/1000/10G Base-T
Class F	CAT.7	up to 600 MHz	10/100/1000/10G Base-T
Class F _A	CAT.7 _A	up to 1 GHz	10/100/1000/10G Base-T
		up to 1.2 GHz	10/100/1000/10G Base-T

Photographs are not to scale and do not represent detailed images of the respective products.

Overview installation lengths for ETHERNET

	Medium	Cable	Installation length
	AUI	-	50 m
	10 Base2	Thin ETHERNET	185 m
FTHERNET	10 Base5	Thick ETHERNET	500 m
LIIILKNLI	10 Base-T	Twisted Pair	100 m
	10 Base-FL	62.5 μm, 50 μm Multimode LWL	2,000 m
	100 Base-TX	Twisted Pair	100 m
Fast	100 Base-FX	62.5 µm, 50 µm Multimode LWL FDX	412 m
EIHERNEI	100 base-1 X	62.5 µm, 50 µm Multimode LWL HDX	2,000 m
	1000 Base-CX	Twinax STP (150 Ohm)	25 m
	1000 Base-T	Twisted Pair	100 m
O'	1000 Base-SX	62.5 µm Multimode LWL	275 m
Gigabit	850 nm	50 µm Multimode LWL	550 m
LIIILKNEI	1000 Base-LX	62.5 µm Multimode LWL	550 m
	1000 Base-LX 1300 nm	50 µm Multimode LWL	550 m
	1500 1111	Singlemode LWL	5,000 m
	10G Base-T	Twisted Pair	100 m
	10G Base-LX4 WWDM	Singlemode LWL	10,000 m
	10G Base-LX4 WWDM	Multimode LWL	300 m
10 Gigabit FTHERNET	10G Base-SR/SW	62.5 µm Multimode LWL	26 m
ETHERNET	850 nm	50 µm Multimode LWL	84 m
	10G Base-LR/LW 850 nm	Singlemode LWL	10,000 m
	10G Base-ER/EW 1550 nm	Singlemode LWL	40,000 m

HITRONIC[®]

The optical transmission of messages in FOC operates according to the principle of "total internal reflection." The reflection is created by the fact that an optically thinner cladding is placed around the light conducting core on whose interface the light totally reflects and is thereby conducted through the FOC.

Although the principle of optical message transmission has been known for a long time, not until recent years was one able to develop, produce and commercially use low loss FOCs. In a time when the need for rapid and secure communications networks is continually growing we can neither imagine a world without the transmission medium FOC nor can it be replaced.

Advantages of fibre optics over copper-based transmission

- Protection against electromagnetic interferences, i.e. cable routing can carried out without consideration of possibly occurring sources of ectromagnetic interference
- rapid made-to measure preparation of plastic FOC, simple on-site plug-in connector installation
- Potential separation, that is potential delays are not possible
- · No crosstalk and high security against listening in
- Small dimensions and minimal weight (up to 2.2 mm outside diameter and/or 4g/m for plastic FOC in Simplex model)

Among fibre optic cables there is a difference based on the material used between plastic fibres (POF), fibres made of silica glass with optical plastic cladding (PCF) and fibres made of pure silica glass (glass fibre or GOF).

Mainly for use in the industrial area, Lapp Kabel offers FOCs made of glass or plastic and/or hybrid cables.

A portion of these cables is constructively laid for heavy deployment in the energy supply chain. The overall concept of your data transmission line determines whether glass or plastic fibre optic cables are used. We offer you suitable plug-in connectors, tools and pre-fabricated FOC patch cables that match the cables being used.

Typical deployment areas for POF and PCF FOCs:

- · Bus systems in automatisation
- · Machine construction and plant engineering

Because of their special characteristics POF-FOC are used

- High demands at data security
- For conditions where space is limited
- For short data transmission distances (up to around 70 m)

Typical application areas for GOF FOCs:

Everywhere where large amounts of data must be transmitted at high speed over distances of approx. 60 m to several kilometres. For example in

- Local Area Networks (LAN)
- Metropolitan Area Networks (MAN)
- Wide Area Networks (WAN)

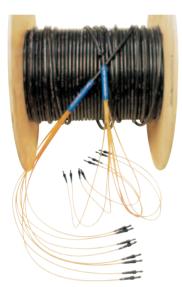
UNITRONIC® DeviceNet

LAPP KAREL STUTGART HITSONG POP SIMPLEX PE-PUR

HITRONIC® HYBRID FD P DESINA®

HITRONIC[®] BUS PCF DUPLEX indoor + outdoor

HITRONIC[®] HQN Outdoor Cable



Optical transmission systems

Two different connection types are used with fibre optic cables:

- Detachable connections realised with plug connectors. In this case it is necessary to attach a plug to a glass fibre. This calls for trained personnel and expensive special tools.
- Non-detachable connections created by directly splicing two glass fibres together. To do this requires highly trained personnel and very expensive equipment. If the necessary resources are used only occasionally, the investment is very unlikely to pay for itself.

Advantages

Using a trunk system offers you the following advantages:

- No costs of special equipment
- No need for highly trained personnel
- Uniform quality thanks to manufacture under laboratory conditions
- Installation is quick, thereby saving costs

- No need to carry out measurements on the cable run, comes with OTDR test certificate
- Fan-out elements also available in IP67

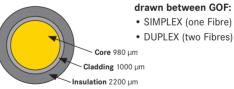
Fibre Optical cables F.O.

Advantages of Fibre Optical Cables

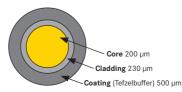
- high resistance to tapping
- no EMC interference
- no EMC testing required

GOF - Glass Optical Fibre

- long range
- no potential transfer
- no cross-talk


- little space required
- · low cable weight
- can be installed in a potentially explosive environment

A distinction is drawn between GOF:


A distinction is

POF – Polymer Optical Fibre

PCF – Plastic Cladded Fibre

Fibre type	max	Numerical aperture			
	660 nm	850 nm	1300 nm	1550 nm	
POF	160				0.47
PCF	10.0	8.0			0.37
GOF MM 50 µm OM2		2.7	0.9		0.20
GOF MM 50 µm OM3		2.7	0.9		0.20
GOF MM 62.5 µm OM 1		3.2	0.9		0.27
GOF SM			0.36	0.2	0.10

Fibre type	max. transfer size [m]					
	660 nm	850 nm	1300 nm	1550 nm		
POF	100 Mbit/s: 60					
PCF	100 Mbit/s: 550					
GOF MM 50 µm OM2		100 Mbit/s: 2.000 1 Gbit/s: 550	100 Mbit/s: 2.000 1 Gbit/s: 550			
GOF MM 50 µm OM3		10 Gbit/s: 300	10 Gbit/s: 300			
GOF MM 62.5 μm OM1		100 Mbit/s: 2000 1 Gbit/s: 275	100 Mbit/s: 2000 1 Gbit/s: 550			
GOF SM			1 Gbit/s: 5.000	1 Gbit/s: 80.000 10 Gbit/s: 40.000		

OM3-Fibre, 10 Gbit/s Ethernet Systems

In these systems the data rates are so high that a length of just 84 m is achieved with conventional multi-mode fibres. This performance is just sufficient for the reliable operation of 1GB/s lines. The differences in running time for the multimode fibres was minimized for the OM3 fibre with special processes in the core area. This enables transmission distances of up to 300 m. With the OM3 fibre, costs are considerably reduced by using the simpler, less expensive Mulrimid terminal devices and installation-friendlier termination.

EPIC® Rectangular Connectors

Quality, functionality and safety.

Three attributes, one brand name: EPIC[®] rectangular industrial connectors are renowed for their innovative electrical design and physical characteristics.

Solutions for many applications:

- Number of poles from 2 up to 216
- · Currents up to 82A
- · Voltages up to 1000V
- protection class IP 65
- modular for current supply, signal and data
- housings variations for cable connection and for the assembly at devices

EPIC

:::;;

- Termination technologies: solder, screw, crimp, cage clamp
 For inserts with screw termination please use the processing tool
- (Chapter Accessories) • H-A 3: Zinc die-casting,
- thermoplastic
- H-A 10-48; H-B 6-48: Aluminium die-casting

1. Cable gland

2. Hood

3. Pin and sleeve insert

4. Base

Industrial Connectors

1. Cable gland

For hoods, coupler hoods and surface mount bases for sealing, strain relief and to provide the cable with EMC protection. A selection of glands are available depending on the application.

2. Hood

The hood can be combined at will with either a panel or surface mount base, or a cable coupler hood for cable to cable connection.

3. Pin and sleeve insert The pin and sleeve insert accommodates the individual contact elements and provides insulation at the same time.

Available connector variations include screw, crimp and spring cage clamp terminated connectors.

40

Photographs are not to scale and do not represent detailed images of the respective products.

EPIC®

4. Base housing

There is a choice of three different base housing depending on the application:

Surface mount base: For wall mounting

Panel mount base: For panel lead-throughs

Cable coupler hood: For cable to cable connections

There are two housing series with different housing sizes (width). Series EPIC[®] H-A is the narrower series. The increased housing width of the EPIC[®] H-B usually allows the use of inserts with higher voltages for the same number of contacts.

Industrial Connectors

Technical Data

Series	Rated voltage	Rated current	Termination type
EPIC [®] H-A 10 – 48 EPIC [®] H-A 3/4 Compact design	VDE: 250 V VDE: 400 V UL: 600 V	VDE: 16 A VDE: 10 A UL: 10/14 A	Screw
compact acoign	CSA: 600 V	CSA: 10/16 A	
EPIC [®] H-Q5 5+PE	VDE: 230 V/400 V	VDE: 16 A	Crimp
The small format	UL: 600 V CSA: 600 V	UL: 16 A CSA: 16 A	
EPIC [®] STA 6 – 40	VDE: 60 V	VDE: 10 A	Screw
Low voltage connector	UL: 48 V CSA: 48 V	UL: 10 A	Solder
EPIC® H-BE 6 – 48	VDE: 500 V	VDE: 16 A	Screw
Standard inserts	UL: 600 V CSA: 600 V	UL: 16 A CSA: 16 A	Crimp
	VDE: 500 V UL: 600 V	VDE: 16 A UL: 16 A	Spring cage
	CSA: 600 V	CSA: 16 A	
EPIC [®] H-EE 10 – 92+PE	VDE: 500 V	VDE: 16 A	Crimp
Inserts for high crimp contact density	UL: 600 V CSA: 600 V	UL 16 A CSA: 16 A	
EPIC® H-BS 6 - 12	VDE: 690 V	VDE: 35 A	Screw
Inserts for high currents	UL: 600 V CSA: 600 V	UL: 35 A CSA: 35 A	
EPIC [®] H-BVE 3 -10 High voltage	VDE: 630 V UL: 600 V	VDE: 16 A UL: 16 A	Screw (spring
cage inserts	CSA: 600 V	CSA: 16 A	(spring HBVE)

42

Photographs are not to scale and do not represent detailed images of the respective products.

EPIC®

Technical Data

Series	Rated voltage	Rated current	Termination type
EPIC [®] H-D 7 – 128 For high contact density	VDE: 42/250 V UL: 250 V	VDE: 10 A UL: 10 A	Crimp
EPIC [®] H-DD 24 – 216 For higher contact density	VDE: 250 V UL: 600 V CSA: 600 V	VDE: 10 A UL: 8.5 A CSA: 10 A	Crimp
EPIC [®] MC 3 − 280 Modular system	VDE: 30-1000 V UL: 100-600 V CSA: 100-600 V	VDE: 1-82 A UL: 4-40 A CSA: 4-25 A	Crimp Screw Spring cage
EPIC [®] TB-H-BE 6-24 Term. adapter	VDE: 500 V UL: 600 V CSA: 600 V	VDE: 16 A UL: 16 A CSA: 16 A	Screw

2.

4.

1. Cable gland

An integral EMC cable gland in the hood, panel mount or cable coupler housing gives built-in protection from electromagnetic radiation.

2. Insert

The inserts can accommodate contacts with crimp or solder terminations.

3. Hood

The top housing (cable plug)

EPIC[®] CIRCON LS 1 – Power connector featuring:

- IP 68 (10h/1m)
- Unique marking system

 a) using coloured identification clips

can be freely combined with a panel mount, coupler or surface mount base.

4. Identification ring

The unique marking system uses coloured identification clips to provide clear marking. Alternatively connectors can be marked with individually writable labels that are simple, abrasion resistant and will not get lost.

5. Housing base

Three different types of housing are available: Panel mount base: For panel feed-throughs Feed-through housing: For wall feed-throughs with wall fixing Coupler connector: For cable to cable connections

b) or alternatively with individually writable labels

- Clearly visible and tactilematching when connecting
- Contact connector to DIN EN 61984

Photographs are not to scale and do not represent detailed images of the respective products.

Current information www.lappgroup.com/products

45

EPIC®

EPIC® Circular connectors

Electrical data 5 + PE

Rated current

Rated voltage Rated surge voltage Pollution severity Overvoltage category Termination sizes Power

Electrical data 3 + PE + 4

Rated current

Rated current

Rated voltage
Rated surge voltage
Rated surge voltage
Pollution severity
Overvoltage category
Termination size/type

Termination size/type

2 mm contacts: 22 A at 2.5 mm² 2 mm contact: 630 V 2 mm contact: 6 kV 3 (≥ IP54) 3

0.5 - 2.5 mm² crimp AWG 14 - 20 crimp

1 mm contacts: 7 A at 1.0 mm² 2 mm contacts: 22 A at 2.5 mm² 2 mm contacts: 630 V 1 mm contacts: 6 kV 3 (\geq IP54) 3 1 mm contact: 0.14 - 1.0 mm² crimp AWG 18 - 24 crimp 2 mm contact: 0.5 - 2.5 mm² crimp AWG 14 - 20 crimp

Electrical data 5 + PE/3 + PE + 4

Protection class	IP 68 (10h/1m)
Temperature range	-25 °C to +125 °C
Mating cycles	500
Cable diameter	7.5 – 15.5 mm
Resistance	Corrosion resistant
	Mechanically resistant

EPIC® POWERLOCK A1 C

Benefits

- Resistant to mechanical influences in harsh environmental conditions
- Connectors in harmonized colours according to European standards
- Every colour different coded to prevent incorrect plugging
- US colours on request

Application range

- For Renewable Energy Plants e.g. Wind power
- For mobile and stationary power distribution
- For the connection of motors, transformers and generators
- Light & Sound technology

Photographs are not to scale and do not represent detailed images of the respective products.

Current information www.lappgroup.com/products

EPIC®

EPIC® POWERLOCK D6 C

Benefits

- Resistant to mechanical influences in harsh environmental conditions
- · Connectors in harmonized colours according to European standards
- Every colour different coded to prevent incorrect plugging
- US colours on request

Application range

- For Renewable Energy Plants e.g. Wind power
- · For mobile and stationary power distribution
- · For the connection of motors, transformers and generators
- · Light & Sound technology

EPIC® SOLAR 4 THIN M pre-assembled

RoHS

Benefits

- · Unresistant cable connection for efficient power transmission
- · Innovative, patented pending contact system, current leaves the connection cool
- High reliability and longevity by welded bonding
- Extra Thin 12 mm for high density packing

Application range

 Pre-assembled connector cables for weather proof cabling of Photovoltaic systems

Product features

- 4 mm connector system with double hook
- Pre-assembled with 100% automatic control
- Wide range of wire sizes from 1.5 mm² up to 6 mm²
- TÜV Rheinland certified
- UL in preparation

48

Photographs are not to scale and do not represent detailed images of the respective products.

Photographs are not to scale and do not represent detailed images of the respective products.

EPIC®

EPIC® SOLAR 4 THIN F pre-assembled

			. 595		1.1.4
- III -	E	1	0	0	
1		2		I ;)	

SKINTOP[®] Cable glands

Technical data

- Rated voltage in V 1000 V AC/DC
- Rated impulse Voltage
 8 kV
- Contact resistance < 0.2 m Ohm

Degree of protection

- IP68 (10 h/1 m)
- Protection class II
- Cycle of mechanical operation 100

Range of temperature

• -40 °C ... +105 °C

SKINTOP® CLICK/SKINTOP® CLICK BS SKINTOP® cable glands polyamide metric

SKINTOP[®] CLICK

SKINTOP® CLICK BS

Benefits

SKINTOP® CLICK

- Fewer parts, counter nut no longer needed
- Up to 70% time saving due to innovative CLICK system
- Vibration protection
- · No thread required

SKINTOP® CLICK BS

- Reliable bending protection for cable conservation and functional reliability
- Up to 70% time saving due to innovative CLICK system
- · No thread required

52

- To protect flexible cables
- Fewer parts, counter nut no longer needed

Application range SKINTOP® CLICK

- Automation technology
- Solar applications
- · Switch cabinet building
- Measurement, control and electrical applications
- Air conditioning technology

SKINTOP® CLICK BS

- Cables for electrical appliances and machinery, which are moved under normal use, must be protected against excessive bending, as required in accordance with VDE 0730.
- Robotics industry
- Flexing machine parts
- Apparatus construction
- Light and sound
 - applications

Photographs are not to scale and do not represent detailed images of the respective products.

SKINTOP[®] K-M ATEX plus/ SKINTOP[®] KR-M ATEX plus SKINTOP[®] cable glands polyamide metric

SKINTOP® K-M ATEX plus

Benefits

SKINTOP[®] K-M ATEX plus SKINTOP[®] KR-M ATEX plus

- High degree of protection
- Dynamic strain stability
- · High strain relief
- Large, variable clamping ranges
- Permanent vibration protection

SKINTOP® KR-M ATEX plus

Application range SKINTOP® K-M ATEX plus

 Devices, machines of type of protection enhanced safety "e"

- Equipment group II/ Category 2G+1D
- Mobile offshore and marine applications
- Chemical and petrochemical industry

SKINTOP® KR-M ATEX plus

• With reducing seal insert, to seal cables with smaller outer diameters.

SKINTOP[®] MS-M ATEX/ SKINTOP[®] MSR-M ATEX

SKINTOP® cable glands nickel plated brass metric

SKINTOP® MS-M ATEX

Benefits

SKINTOP[®] MS-M ATEX SKINTOP[®] MSR-M ATEX

- Dynamic strain stability
- · High strain relief
- Large, variable clamping ranges
- Anti Static
- · Maximum reliability

SKINTOP® MSR-M ATEX

Application range

SKINTOP® MS-M ATEX

- Devices, machines of type of protection enhanced safety "e"
- Equipment group II/ Category 2G+1D
- Mobile offshore and marine applications
- Chemical and petrochemical industry

SKINTOP® MSR-M ATEX

• With reducing seal insert, to seal cables with smaller outer diameters.

SKINTOP® MS-M BRUSH

SKINTOP® cable glands nickel plated brass metric

Benefits

- Faster, easier screen contact
- Optimal low-resistance 360° screen contact
- Faster than any other comparable system
- Uncomplicated and reliable
- Maximum assembly and adjustment possibility

Application range

- For EMC compliant earthing of the copper braiding and copper shaft sheath
- Automotive systems
- Conveyor technology
- High power drives
- Frequency converters

SKINTOP[®] CUBE SKINTOP[®] Cable Bushing System

SKINTOP[®] CUBE MODULE

SKINTOP[®] CUBE

SKINTOP[®] CUBE FRAME

Benefits

Various clamping range

- Vibration safe fixed modules
- Strain relief
- Oil resistance
- Simplified service due to easy assembling and disassembling

Application range

- For installation of harnessed cables
- Everywhere where cables must be safely inserted into housings.
- Apparatus and switch cabinet construction
- Electronic installations
- Automation technology

SILVYN[®] Protective cable conduitand cable carrier systems

Extraction of the SILVYN[®] range

Plastic cable conduits

SILVYN[®] SI PVC cable conduit – protection against dust + humidity.

SILVYN®

SILVYN[®] SP PVC conduit with a reinforced PVC spiral.

Cable conduits with PVC spiral

SILVYN[®] EL A flexible PVC conduit with a reinforced PVC spiral, UL approved.

SILVYN® ELÖ /C conduit with Oil resistant PVC conduit PVC spiral, with a reinforced PVC spiral.

pirai, with a reinforced

Highly flexible cable conduits

SILVYN® FPS A highly flexible PUR conduit with an insulated steel spiral.

SILVYN® FD-PU Highly flexible PUR conduit for the toughest demands, with insulated steel spiral.

Photographs are not to scale and do not represent detailed images of the respective products.

Extraction of the SILVYN® range

Polyamide cable conduits, corrugated

SILVYN[®] RILL PA 6 A polyamide cable conduit for the toughest demands.

SILVYN[®] FPAS

Polyamide conduit for the toughest demands.

Protective cable conduits for subsequent installation

SILVYN[®] RILL PA 6 SINUS Polyamide 6 protective conduit, resistant against oil, gasoline and chemicals, with sinusodial cut.

SILVYN® SPLIT Polyamide 6 protective conduit, resistant against oil, gasoline and chemicals, divisible.

Metal cable conduits for heavy mechanical stresses

SILVYN[®] AS Steel conduit for high mechanical stresses.

SILVYN® AS-P Steel conduit, fluid-tight, with a PVC outer sheath.

Photographs are not to scale and do not represent detailed images of the respective products.

SILVYN®

Extraction of the SILVYN[®] range

Steel cable conduits, highly flexible with a plastic sheath

SILVYN[®] LCC-2 A highly flexible steel conduit with a plastic sheath.

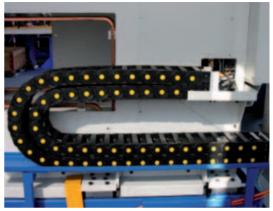
SILVYN[®] LCCH-2 A highly flexible steel conduit with a plastic sheath, halogen-free.

SILVYN®

SILVYN[®] SSUE A highly flexible stainless steel conduit

SILVYN[®] UI511 Anaconda cable conduit, stainless steel.

Anaconda cable conduits in steel and plastic


SILVYN[®] CNP Anaconda conduit, non-metallic, watertight, UL approved.

SILVYN® HTDL Steel protective conduit with PVC outer sheet, liquid-tight, UL approved.

SILVYN[®] CHAIN Series Medium

All purpose, due to its single pin, also for higher mechanical requirements. Specially for small and medium-size chains. Available closed or with foldable lid.

Characteristics

- Standard applications
- Tongue/groove system with yellow pin
- Inner hight 18 76 mm
- 12 types, many widths

Application areas

- Automation
- Handling equipment
- CNC machines
- Medium sliding applications

SILVYN[®] CHAIN Series Sliding

Specialist for operation on very long travelling distances up to 400 meters. Chain links with shoes made of lowfriction, low-wear plastics. System-completing channel constructions available for supporting and guiding the chain.

Characteristics

SILVYN®

- · Long sliding distances
- Tongue/groove system with yellow tripple pin
- Inner hight 30 70 mm
- 12 types, many frame versions: Nylon, Aluminium, Inox

Application areas

- Sliding with high speed and high charge weight
- Long life-cycle applications (very long lifetime)

SILVYN[®] CHAIN Series Steel

The hardliner. For all applications not allowing the use of a plastic chain, for example in steel works, foundries, on machine tools and oil-rigs. Made of galvanized steel with drilled aluminium frames or steel separators (adjustable separators). Available in stainless steel AISI 316 if required.

Characteristics

- Highest load capacity
- Highest chemical resistance
- Tongue/groove system in metal
- Inner hight 32 182 mm
- 5 standard types
- · Customised versions

Application areas

- Steel mills/steel works
- Off-Shore
- Long-travel machining centers
- · Heavy duty environment

Photographs are not to scale and do not represent detailed images of the respective products.

SILVYN[®] CHAIN Installation types

Horizontal

Vertical

SILVYN®

FLEXIMARK[®] Cable marking products

\ I	low?	BASIC S	YSTEM	CUSTOMIZED SYSTEM		
	Ready made to deliver for each environment		liver ent	Your demand – we deliver		
Wh	at?					
			19100	a farmer a		
	Indoor	MINI & MAXI & HOLDERS PTE	STAINLESS STEEL	STAINLESS STEEL	CABLE MARKING	
	Outdoor & Indoor	🛸 🖷		and the second	41	
CABLE	no	COLLARS TS & HF & SHR MARKING TUB TAGS		COLLARS FOR CABLE TIES & MARKING TAGS	TEXT COLLARS PTET	
	oor		1	2	No. 10	
	Indoor	LABEL CARDS AND BLOCKS	DYMO [®] printer	SHRINK TUBE MARKING	CABLE TIE MARKING FKBB	
	ounting vire		THE STATE	2	> ~~	
WIRE	before mounting the wire	FLEXIPART	PA MARKING RINGS	SHRINK TUBE FLEX MARKING	KIPART MARKING RINGS	
>	nting re	110		~	-	
	after mounting the wire	SNAP-ON COLLARS & MARKING TAGS	PC MARKING RINGS		COLLARS & NG TAGS	
	. 60	10 11 114	-11-2			
INT	Device marking	MLM MOUNTING PROFILES & MINI	PGS CHARACTER HOLDERS	ENGRAVE	D MARKING	
COMPONENT	inal		100	-	and the second se	
0 S	Termina	TERMINAL BLOCK	DYMO [®] printer	TERMIN	AL BLOCK	
	Sensor					

Photographs are not to scale and do not represent detailed images of the respective products.

FLEXIMARK®

\ F	low?	DATA MARKING					
	\backslash	Laser office pr	oft with Thermal transfer d WS-CAD printers				
		<u></u>		Tace		1	
W	hat?				10%	4 ···	
	Indool	and a second	al and the	a series	4	and and	
	Outdoor & Indoo	COLLARS FOR CABLE TIES LFL 4.2	FLEXILABEL LFL & HOLDERS PTET/LAB	FLEXILAB TFL & HOLD PTEF/LA	EL CA	LLARS FOR BLE TIES & RKING TAGS TMB	
CABLE		and the second		1	27	and and	
	or	LCK/LCFK LABELS	CABLE LABEL LFL & TIES	CABLELAE LTFL & TII	EL TO	K LABELS	
	Indooi	1000				and the second s	
		TAG TIES & L	A/LB LABELS	FLEXIMARK [®] TAG TIES & flat shrink tube TA LABELS			
	unting re		and the second s			and the second second	
	before mounting the wire	FLEXIPRINT LF	COLLARS TS/HF & FLEXILABEL LFL 4.2	FLEXIPRIN	T TF TUE	HRINKING BES SHRINK MARK SM	
WIRE	nting e				and the second second	100	
	after mounting the wire	LCFK/LCK LABELS	BRADY [®] FLAG LABELS B-425	TCK LABELS	FLAG LABELS	SNAP-ON COLLARS & MARKING TAGS	
	e B	<i>.</i>			J.J.	STATE OF	
Ĭ	Device markin	LA LABELS	LFL LEXEL/ THORSMAN	TA LABELS	BRADY® EPREP	MLM MOUNTING PROFILES & TFL 9.5	
ONEI	erminal.				and the owner of		
COMPO	Tern	LA LA	ABELS	TER	MINAL BL	DCK	
	ō			i.		-	
	Senso	CLIP-ON CO	LLARS & LFL	BRADY [®] DURASLEE	C C	CLIP-ON OLLARS & RKING TAGS	

Cable Accessories

PEW 8.87

Front crimp pliers with a large range of diameters from 0.08 to 10 \mbox{mm}^2

EASY STRIP 2

Self-adjusting cutting and stripping tool with an increased stripping range and for different materials

X cassette: 0.02-10 mm² XL cassette: 0.1-4 mm² Please see our Main Catalogue for further details.

Photographs are not to scale and do not represent detailed images of the respective products.

Current information www.lappgroup.com/products

Twist Tail[™] cable tie

Twist Tail[™] cable tie

- Industry cable ties for quick and secure assembly.
- General purpose applications, indoor and outdoor

TY-GUN ERG 120 cable tie pliers/ TY-GUN ERG 50

TY-GUN ERG 120 cable tie pliers/TY-GUN ERG 50

Benefits

- · Cable tie tool
- TY-GUN allows quick and economical binding, fixing and mounting of cable ties.

Application range

- For plastic cable ties
- Installation pistol

LS steel cable ties

• LS one piece steel cable ties can be used outdoors and under extreme conditions, e.g. high corrosion risk.

ACCESSOF

Photographs are not to scale and do not represent detailed images of the respective products.

Introduction to Cable Engineering

Continuous supply of electric power, or faultless data transfer respectively, provided mostly through wiring, are a primary requirement affecting virtually all areas of our life. This results in tough requirements for production. installation and operation of cables. To be able to design the cables suitably and to install them correctly, it is necessary to have good knowledge in various fields. e.g. physics, electrical engineering, mechanic and other applied engineering sciences.

Cable failure can be caused, for example, by mechanical action or electrically by overvoltage, by insulation ageing, corrosion, sneak currents, as well as by unqualified installation or by incorrectly or badly dimensioned design. What is also important is technically correct elaboration of a wiring project and proper crosscheck of all installation work. Then, in operation, it is necessary to observe relevant operating conditions, a cable was designed for.

Employees of the Lapp Group are prepared anytime to help you professionally in preventing any and all consequences, which may be caused by a wiring failure.

The Fundamentals of Cable Engineering

1. What cables and conductors are required for

- Electric power transmission
 - for power supply

• Transmission of data, signals or impulses - for data communication

Generally, the term of electric cable means a route for transmission of el. power, data or signals betweeen a source and an appliance (for data cables \rightarrow transmitter and receiver).

2. Explanation of general terms

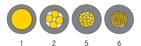
2.1 Conductor

Conductor (conductive core) represents a conductive route of electric power and together with insulation it forms a wire. Several wires form a core. A sheath protects a cable from external actions.

Metals are conductors of the 1st class. Conductance of metals is related to the number of electrons in their outer layer. The most often used conductor materials are as follows:

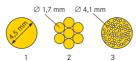
- Copper (Cu) (in more than 99 % of all applications)
- Aluminium (AI)
- Silver (Ag)

Conductors can be bare or treated (tinned, silver-coated, gold-coated).


Photographs are not to scale and do not represent detailed images of the respective products.

Classification according to Stranded core classes design: Class 1: compact

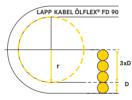
- Compact core: of a single wire (up to 16 mm²) or of multiple wires
- Stranded core: made of 7 to several hundreds of thin single wires (VDE 0295/ IEC 602258).


Classes of stranded cores are specified in VDE 0295, or from 0.5 mm² in compliance with IEC 60228 respectively. Max. diameter of a single wire and max. conductor resistance are critical for the core design. The larger crosssectional area, the lower resistance; the larger length, the higher resistance (similarly as for water supply piping). Class 1: compact Class 2: made of multiple wires Class 5: made of fine wires Class 6: made of extra-fine wires

Example of a conductor with nominal cross-sectional area of 16 mm^2

- A = π r² or A= π d²/4
- A = geometric
 - cross-sectional area
- r = radius
- d = diameter

1: solid wire (1 x 4.5 mm) 2: multiple wires (7 x 1.7 mm) 3: fine wires (122 x 0.41 mm)


Photographs are not to scale and do not represent detailed images of the respective products.

74

Current information www.lappgroup.com/products

Minimum bending radius

It is a characteristic value, which gives you a degree of possible cable bending without its damaging. It is absolutely necessary to respect this value, when using a cable in tow chains ("FD" cables in the Lapp Group programme). Only maximum outside diameters are shown for highly flexible cables; tolerance is possible only downwards.

D = Cable outside diameter

2.2 Insulation

Insulation is electrically nonconducting protective layer around the conductor. Insulating materials are applied on conductors by extrusion. The mostly used insulating materials are compounds of organic elements. C, H2, O2, N2, S, e.g.:

- Thermoplastics: PVC, PE, PP, PTFE
- Elastomers (rubber): CR, SR
- Thermoplastic elastomers: PUR, TPE-E

An insulated conductor is called a wire.

2.3 Twisting

While producing a multiwire cable the wires are twisted together.

A cable of wires, a bundle of wires or a twisted bundle (cable core) is created.

Reasons for twisting are:

- Lower need for space → smaller outer diameters
- Circular form
- Flexibility

Photographs are not to scale and do not represent detailed images of the respective products.

Current information www.lappgroup.com/products

2.4 Identification of wires (wire identification code)

To be able to connect the wires correctly, they must be uniquely identified.

Numbering

- All wires are identified by numbers in ascending order from 1 to ...
- Mostly by white digits on black background (insulation)
- The only exception is a protective conductor, which is always green-yellow

Numbered wires

Protective green-yellow wire Colour ratio 70:30

Colour code

- All wires are differentiated by different colours of insulation
- Individual colours are specified in the "Wire Identification Code"
- e.g. according to DIN VDE 0293-308/HD 308 S2

Photographs are not to scale and do not represent detailed images of the respective products.

2.5 Protection, screening, armouring It has 2 main functions:

 Mechanical protection by braiding made of steel wires protected from "S" oxidation, e.g. ÖLFLEX® CLASSIC 100 SY

 Electromagnetic protection (EMC) by braiding made of tinned copper "C" wires, e.g. ÖLFLEX[®] CLASSIC 110 CY black 0.6/1 kV

 or by braiding made of copper "D" wires, e.g. ÖLFLEX[®] ROBOT 900 DP

 or by braiding made of metallized foil (e.g. aluminium bonded (steamed) polyester sheet), e.g. UNITRONIC[®] BUS EIB

2.6 Sheath

The sheath is a closed cover protecting elements laying under the sheath from external actions (mechanical, thermal, chemical or physical damages). Correct selection of sheath material is decisive.

Protection from immissions Protection from emmissions

Mechanical actions:

abrasion, impact, bending, tension, twisting (torsional swinging)...

Examples of protections: braiding of steel wires, bearing members, supporting braiding, protective hoses

Chemical actions:

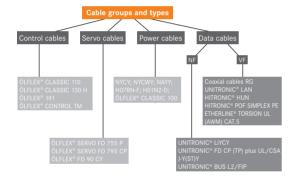
acids, caustics, oils, solvents, water (from 50 °C) Examples of protections: sheath materials, such as TEFLON, ROBUST, PUR; protective hoses

Thermal actions:

cold, heat Examples of protections: mixture with thermal stabilisers, teflon, silicone

Physical actions:

UV radiation, radioactive radiation Examples of protections: mixture with UV stabilisers


The mostly used sheath materials are as follows: PVC, PUR, SR, CR.

Photographs are not to scale and do not represent detailed images of the respective products.

3. Labelling products of the Lapp Group programme

ÖLFLEX[®] CLASSIC 110 4 G 1.5 mm²

- 1. Brand, identification
- 2. Number of wires
- G with a protective conductor or X without a protective conductor (green-yellow)
- Cross-sectional area or diameter (J-Y(St)Y 4x2x0.6mm) ... and relevant quantity

4. Selection criteria

Which criteria are important?

 What is the purpose of use? Description of application What nominal voltage is required? U_o/U 300 V, 500 V, 600/1000 V ...

- 3. Where the cable will be used? Environment
 - Thermal resistance
 - · UV radiation resistance
 - · Weather resistance
- How the cable will be laid? Way of laying Fixed or movable, in a tow chain, positively guided (pulleys...)
 - minimum bending radius, reversed bending cycles, tensile forces
 In open or closed cable systems (troughs, pipes...)
 - Current-carrying capacity, reduction factors In the vicinity of inter-
 - Screening by copper braid

ference fields (EMC)

 What requirements for norms should be fulfilled? National norms, e.g. VDE, HAR, UL, CSA, NOM... 6. Other requirements Behaviour in case of fire/ Non-halogenity Chemical actions: free of compounds harming varnish wettability, free of lead, resistance to oils, acids, water Mechanical actions: resistance to torsional strain, to abrasion, to extension strain

5. Standards, approbations, norms

Approbation is a defined special standard for cables issued by an authorised body including description of design (compositions, materials, diameters, etc.) and the use. (see Table T6 and T18).

BLAPP GROUP

A1 Selection Tables

A 1: Power and control cables

Application Criteria			Са	ble	and	Lea	ad I	Des	igr	ati	on		
For static and occasional flexing use	ÖLFLEX [®] CLASSIC 100	ÖLFLEX [®] CLASSIC 100 Yellow	ÖLFLEX [®] CLASSIC 100 CY	ÖLFLEX [®] CLASSIC 100 SY	ÖLFLEX® CLASSIC 100 BK POWER 0.6/1 KV	ÖLFLEX® CLASSIC 110	ÖLFLEX [®] CLASSIC 110 Cold	ÖLFLEX [®] CLASSIC 110 Orange	ÖLFLEX® CLASSIC 110 CY	ÖLFLEX [®] CLASSIC 110 SY	ÖLFLEX [®] CLASSIC 110 Black	ÖLFLEX [®] CLASSIC 110 CY Black	ÖLFLEX [®] CLASSIC 115 CY
Application													
Excepted circuits remain ener-													
gized acc. IEE 60204-1 § 5.3.5													
For intrinsically safe circuits in hazardous locations to /VDE 0165					see	e EE	B-ca	bles	s				
Hand tools and lamps													
on worksites													
Oil resistant to													
UL + CSA specification				4			_			_		_	
Oil resistant to VDE Bio oil resistant													
Cables resistant to chemicals					l rate se		l	Tal		 [1/	 nd	T2	
Cables resistant to ultra-violet light		50	0 50	:pai		lec			Jie				L
Cold-flexible cables							•				-		
Servomotors/							-	7					
Motive pow. engineering			•					1					
Standards													
Based on VDE/HAR/DIN				٠		٠		٠	٠	٠		٠	
As per Standard													
with VDE certification								_				_	
with VDE registration with HAR certification (HAR)						•	-		•	•			
with UL certification													
with CSA certification													
Temperature range													
+105 °C													
+90 °C													
+80 °C													
+70 °C													
+60 °C													
-5 °C													
-10 °C													
-15 °C													
-25 °C													
-30 °C		-		-		_		-	_	_			
-40 °C													
-50 °C													
-55 °C													

B LAPP GROUP

Extracts from Selection Tables

Selection Tables A1

A1: Power and control cables

Application Criteria			Ca	ble	and	Lea	ad I	Des	igr	ati	on		
For static and occasional flexing use	ÖLFLEX® CLASSIC 100	ÖLFLEX [®] CLASSIC 100 Yellow	ÖLFLEX [®] CLASSIC 100 CY	ÖLFLEX® CLASSIC 100 SY	ÖLFLEX® CLASSIC 100 BK POWER 0.6/1 KV	ÖLFLEX [®] CLASSIC 110	ÖLFLEX [®] CLASSIC 110 Cold	ÖLFLEX [®] CLASSIC 110 Orange	ÖLFLEX® CLASSIC 110 CY	ÖLFLEX® CLASSIC 110 SY	ÖLFLEX [®] CLASSIC 110 Black	ÖLFLEX [®] CLASSIC 110 CY Black	ÖLFLEX [®] CLASSIC 115 CY
Laying			0	0	0 11	0	0	-	0	0		0	0
Outdoor, only indirectly in the ground (conduit) UV-protected, static					•						•	•	
Indoor, on surface, in conduit, in ducting, in partition walls, static	•	•	•	•	•	•	•	•	•	•	•	•	•
Outdoor, protected against UV light, static laying	•	•	0	0	•	•	•	•	0	0	•	•	0
Outdoor, unprotected in the open, low flexing					•						0	0	
Indoor, static & low flexing application	•	•	•	0	•	•	•	•	•	0	•	•	•
Bending radius, low flexing													
5 x D													
10 x D													
12.5 x D													
15 x D	•	•				•	•	•			•		
20 x D			•	•					•	•		•	•
Nominal voltage													_
250 V													
300/300 V													
300/500 V 600 V acc. to UL/CSA				-		-		-	-				•
	1	1.2				100		10			1		
450/750 V													

80

Extracts from Selection Tables

B LAPP GROUP

A1 Selection Tables

A1: Power and control cables

Application Criteria			Са	ıble	and	Lea	ad I	Des	ign	nati	on		
For static and occasional flexing use	ÖLFLEX® CLASSIC 100	ÖLFLEX® CLASSIC 100 Yellow	ÖLFLEX® CLASSIC 100 CY	ÖLFLEX® CLASSIC 100 SY	ÖLFLEX® CLASSIC 100 BK POWER 0.6/1 KV	ÖLFLEX [®] CLASSIC 110	ÖLFLEX [®] CLASSIC 110 Cold	ÖLFLEX [®] CLASSIC 110 Orange	ÖLFLEX® CLASSIC 110 CY	ÖLFLEX [®] CLASSIC 110 SY	ÖLFLEX® CLASSIC 110 Black	ÖLFLEX® CLASSIC 110 CY Black	ÖLFLEX® CLASSIC 115 CY
Make-up													
Fine-wire VDE class 5, copper stranded conductors Superfine wire VDE class 6, copper stranded conductors Ultra fine wire VDE class 6, copper stranded conductors Polyurethane core insulation Rubber core insulation PVC/special PVC PE/PP core insulation Halogen free core insulation Number printing Colour code to VDE 0293 ÖLFLEX* colour code Screening on the forn of copper braiding Common inner sheath under	•	•	•	•	•	•	•	•	•	•	•	•	•
Common inner sheath under overall protection/braiding			•	•					•	•		•	
Steel wire braiding PVC sheath PUR sheath, wear resistant, cutting resistant Halogen free outer sheath Bio oil resistant outer sheath P4/11 Outer sheath of synthetic rubber Outer sheath of Neoprene [®] rubber	•	•	•		•	•	•	•		•	•		•
Outer sheath of rubber compound acc. to standard													

Neoprene® is a registered trademark of DuPont de Nemour

Principal application

82

- Application not customary, but possible, or alternative design available in the range
- Temperature range for flexible laying
- Temperature range for static and flexible laying
- = Temperature range for static laying

B LAPP GROUP

Extracts from Selection Tables

A1: Power and control cables

Application Criteria			Cal	ole	ang	l Le	ead	De	sig	nat	tior		
For static and occasional flexing use	ÖLFLEX® EB	ÖLFLEX® EB CY	ÖLFLEX [®] 140	ÖLFLEX® 140 CY	ÖLFLEX® 150	ÖLFLEX [®] 150 CY	ÖLFLEX® 191	ÖLFLEX [®] 191 CY	ÖLFLEX [®] CONTROL TM	ÖLFLEX [®] CONTROL TM CY	ÖLFLEX® Tray II	ÖLFLEX [®] Tray II CY	ÖLFLEX® SE
Application	0.0	0.0	.0	.0	.0	.0	.0	.0	.0	0.0	.0	0.0	l.C
Excepted circuits remain ener- gized acc. IEE 60204-1 § 5.3.5 For intrinsically safe circuits in hazardous locations to //VDE 0165 Hand tools and lamps on worksites Oil resistant to UL + CSA specification Oil resistant to VDE	•	•	•	•	•	S(ee E	B-c	able	es	•	•	
Bio oil resistant Cables resistant to chemicals Cables resistant to ultra-violet light Cold-flexible cables Servomotors/ Motive pow. engineering Standards		see	ser	oara	ite :	sele	ctio	n Ta	able	• T1	anc	1 T2	
Based on VDE/HAR/DIN As per Standard with VDE certification with VDE registration with HAR certification (HAR) with CSA certification			•	•	•	•	•	•	•	•	•	•	
Temperature range +105°C +90°C +80°C +70°C +70°C													
+60 °C -5 °C -10 °C -15 °C -25 °C -25 °C -30 °C -40 °C -50 °C -55 °C													

Extracts from Selection Tables

B LAPP GROUP

A1 Selection Tables

A1: Power and control cables

	(Cal	ole	and	l Le	ead	De	sig	nat	tior	۱.	
ÖLFLEX® EB	ÖLFLEX® EB CY	ÖLFLEX® 140	ÖLFLEX [®] 140 CY	ÖLFLEX® 150	ÖLFLEX® 150 CY	ÖLFLEX® 191	ÖLFLEX® 191 CY	ÖLFLEX [®] CONTROL TM	ÖLFLEX [®] CONTROL TM CY	ÖLFLEX® Tray II	ÖLFLEX [®] Tray II CY	ÖLFLEX® SF
										•	•	
•	•	•	•	•	•	•	•	•	•	•	•	0
		•	•	•	•	•	•	•	•	•	•	0
												0
•	•	•	•	•	•	•	•	0	0	0	0	•
												٠
	-	•		•								
•	•				-	•	-					
					•		•					
												-
	OLFLEX® EB								M	LL TM L TM CY	ÖLFLEX [®] EB ÖLFLEX [®] EB CY ÖLFLEX [®] EB CY ÖLFLEX [®] 140 ÖLFLEX [®] 140 ÖLFLEX [®] 160 CY ÖLFLEX [®] 190 CY ÖLFLEX [®] 190 CY ÖLFLEX [®] 190 CY ÖLFLEX [®] 190 CY ÖLFLEX [®] 191 CY ÖLFLEX [®] 191 CY ÖLFLEX [®] 191 CY ÖLFLEX [®] 191 CY	

B LAPP GROUP

Extracts from Selection Tables

Selection Tables A1

A1: Power and control cables

Application Criteria			Cak	ole	and	l Le	ad	De	sig	nat	tior	۱.	
For static and occasional flexing use	ÖLFLEX® EB	ÖLFLEX® EB CY	ÖLFLEX® 140	ÖLFLEX® 140 CY	ÖLFLEX® 150	ÖLFLEX® 150 CY	ÖLFLEX® 191	ÖLFLEX [®] 191 CY	ÖLFLEX [®] CONTROL TM	ÖLFLEX® CONTROL TM CY	ÖLFLEX® Tray II	ÖLFLEX [®] Tray II CY	ÖLFLEX® SF
Make-up				0			0	0		0	0		
Fine-wire VDE class 5, copper stranded conductors Superfine wire VDE class 6, copper stranded conductors Ultra fine wire VDE class 6, copper stranded conductors Polyurethane core insulation Rubber core insulation PVC/special PVC PE//PE core insulation Halogen free core insulation Number printing Colour code to VDE 0293 ÖLFLEX® colour code Screening on the forn of copper braiding	•	•	•	•	•	•	•	•	•	•	•	•	•
Common inner sheath under overall protection/braiding				•		•		•					
Steel wire braiding PVC sheath PUR sheath, wear resistant,	•	•	•	•	•	•	•	•	•	•	•	•	•
cutting resistant Halogen free outer sheath Bio oil resistant outer sheath P4/11 Outer sheath of synthetic rubber Outer sheath of Neoprene [®] rubber Outer sheath of rubber compound acc. to standard													

Neoprene® is a registered trademark of DuPont de Nemour

- Principal application
- Application not customary, but possible, or alternative design available in the range
- Temperature range for flexible laying
- Temperature range for static and flexible laying
- = Temperature range for static laying

Current information www.lappgroup.com/products

A2: Highly Flexible FD® Cables - for use in power chains or robot applications

Application Criteria		C	abl	e a	nd I	Lea	d D)es	ign	atio	on	
Use in power chains or robot applications	ÖLFLEX [®] SERVO FD 750 P	ÖLFLEX [®] SERVO FD 755 P	ÖLFLEX [®] SERVO FD 755 CP	ÖLFLEX [®] SERVO FD 760 CP	ÖLFLEX [®] SERVO FD 770 CP	ÖLFLEX [®] SERVO FD 781 CY	ÖLFLEX [®] SERVO FD 781 P	ÖLFLEX [®] SERVO FD 781 CP	ÖLFLEX [®] SERVO FD 785 P	ÖLFLEX [®] SERVO FD 785 CP	ÖLFLEX [®] SERVO FD 790 CP	ÖLFLEX® SERVO FD 795 P
Application												
For industrial machinery to EN 60204 part 1/VDE 0113	•	•	•	•	•	٠	٠	•		٠	•	
For frequency-converter driven servo drives For servo motor, low capacitance For encoders, feedback systems, sensors For free arm robots/torsion load Restricted guidance over rollers, motor drums For indoor application For field bus systems For video transmission, RGB signal transmission For North America with UL + CSA approvals For use in oily environments, enhanced oil resistance	•	•	•	•	•	•	•	•	•	•	•	•
For use in areas with bio oils												
Temperature range												
+ 105 °C +90 °C +80 °C +70 °C +70 °C +60 °C												
+5 °C -5 °C -10 °C -20 °C												
-30 °C -40 °C -50 °C												

B LAPP GROUP

Extracts from Selection Tables

A2: Highly Flexible FD[®] Cables - for use in power chains or robot applications

Application Criteria		C	abl	e ai	nd I	Lea	d D)es	ign	atio	on	
Use in power chains or robot applications	ÖLFLEX® SERVO FD 750 P	ÖLFLEX® SERVO FD 755 P	ÖLFLEX® SERVO FD 755 CP	ÖLFLEX [®] SERVO FD 760 CP	ÖLFLEX [®] SERVO FD 770 CP	ÖLFLEX [®] SERVO FD 781 CY	ÖLFLEX [®] SERVO FD 781 P	ÖLFLEX® SERVO FD 781 CP	ÖLFLEX® SERVO FD 785 P	ÖLFLEX® SERVO FD 785 CP	ÖLFLEX [®] SERVO FD 790 CP	ÖLFLEX® SERVO FD 795 P
Minimum bending radius factor f	or c		tinı									
5 x D									٠			•
6.5 x D												
7.5 x D			۰			٠	٠	•				
10 x D												
12.5 x D											•	
15 x D												
20 x D												
Laying												
For chains with small radii	0		٠	٠		٠	٠	٠	٠	٠	٠	•
For chains with restricted space	0	•	٠	٠	•	٠	٠	•	۰	٠	٠	٠
For low cable weight in the chain			•	•	•	•	•	•	•	•	•	•
For 24-hour operation at high numbers of cycles	•	•	۰	•	•	•	•	•	•	•	•	•
For high acceleration values > 10 m/s ²	•	•	•	•	•	•	•	•	•	•	•	•
For very high acceleration up to 50 m/s ²												
For travel speeds up to 5 m/s, up to 10 m travel length	•	•	•	•	•	•	•	•	•	•	•	•
For travel speeds up to 10 m/s, up to 10 m travel length	•	•	•	•	•	•	•	•	•	•	•	•
For travel speeds up to 5 m/s, up to 100 m travel length	0	•	•	•	•				•	•	0	•
Nominal voltage												
350 Vss				•	•							
30/300 V AC												
300/500 V AC												
600/1000 V AC		۰	٠			٠	۰	٠	٠	٠	٠	٠
600 V acc. to UL/CSA												

86

A2: Highly Flexible FD® Cables - for use in power chains or robot applications

Application Criteria		С	abl	e ai	nd I	Lea	d D)esi	ign	atio	on	
Use in power chains or robot applications	ÖLFLEX® SERVO FD 750 P	ÖLFLEX [®] SERVO FD 755 P	ÖLFLEX [®] SERVO FD 755 CP	ÖLFLEX [®] SERVO FD 760 CP	ÖLFLEX® SERVO FD 770 CP	ÖLFLEX [®] SERVO FD 781 CY	ÖLFLEX [®] SERVO FD 781 P	ÖLFLEX® SERVO FD 781 CP	ÖLFLEX [®] SERVO FD 785 P	ÖLFLEX [®] SERVO FD 785 CP	ÖLFLEX® SERVO FD 790 CP	ÖLFLEX® SERVO FD 795 P
Make-up												
Fine wire VDE class 5, copper stranded conductor Superfine wire VDE class 6, copper stranded conductor Ultra fine wire VDE class 6, copper stranded conductor PVC/special PVC, core insulation Elastomer core insulation PE/collular PE/cellular PE foam skin Polyethylene/Polypropylene TPE core insulation Special TPE (P4/11) core insulation Halogen free compound Number printing VDE colour code	•	•	•	•	•	•	•	•	•	•	•	•
DIN 47100 colour code/ special colour code/ Pair screening PiCY/PiMF/STP Total screening Special PVC sheath PUR sheath, wear resistant, cutting resistant Rubber sheath TPE (P4/11) sheath bio oil resistant Halogen free compound	•	•	•	•	•	•	•	•	•	•	•	•

Principal application

- Application not customary, but possible, or alternative design available in the range
- Temperature range for flexible laying
- Temperature range for static and flexible laying
- Temperature range for static laying

B LAPP GROUP

Extracts from Selection Tables

Selection Tables A2

A2: Highly Flexible FD[®] Cables – for use in power chains or robot applications

Application Criteria		Cable	an	d L	ead	De	sig	nati	ion	
Use in power chains or robot applications	ÖLFLEX® SERVO FD 795 CP	SERVO-cable. acc. Indramat Standard INK	ÖLFLEX [®] FD CLASSIC 810	ÖLFLEX [®] FD CLASSIC 810 CY	ÖLFLEX [®] FD CLASSIC 810 P	ÖLFLEX [®] FD CLASSIC 810 CP	ÖLFLEX® FD 820 H	ÖLFLEX® FD 820 CH	ÖLFLEX® FD ROBUST	ÖLFLEX [®] FD ROBUST C
Application	-									
For industrial machinery to EN 60204, part 1/VDE 0113 For frequency-converter driven servo drives For servo motor, low capacitance For encoders, feedback systems, sensors For free arm robots/torsion load Restricted guidance over rollers, motor drums For indoor application For or indoor application For or delo transmission, RGB signal transmission For North America with UL + CSA approvals For use in oily environments, enhanced oil resistance For use a meras with bio oils	•	• • •	•	•	•	•	•	•	•	•
Temperature range										
+ 105 °C +90 °C +80 °C +70 °C +60 °C +50 °C +5 °C -5 °C -10 °C										
-20 °C -30 °C -40 °C -50 °C										

A2: Highly Flexible FD® Cables - for use in power chains or robot applications

Application Criteria		Cable	an	d L	ead	De	sigi	nati	on	
Use in power chains or robot applications	ÖLFLEX [®] SERVO FD 795 CP	SERVO-cable. acc. Indramat Standard INK	ÖLFLEX [®] FD CLASSIC 810	ÖLFLEX [®] FD CLASSIC 810 CY	ÖLFLEX [®] FD CLASSIC 810 P	ÖLFLEX [®] FD CLASSIC 810 CP	ÖLFLEX® FD 820 H	ÖLFLEX [®] FD 820 CH	ÖLFLEX [®] FD ROBUST	ÖLFLEX® FD ROBUST C
Minimum bending radius factor for	or c	ontinu	ous	fle	xin	g				
5 x D										
6.5 x D							1			
7.5 x D			٠	٠	٠	٠	٠	٠	٠	
10 x D		٠								
12.5 x D										
15 x D										
20 x D										
Laying										
For chains with small radii			٠	٠	٠	٠	٠	٠	٠	
For chains with restricted space		•	۲	۲	٠	٠	۲	۲	۲	
For low cable weight in the chain			٠	٠		٠	٠			
For 24-hour operation at high numbers of cycles	•	•	•	•	•	•	•	•	•	•
For high acceleration values > 10 m/s ²	•	٠	•	•	•	•	•	•	•	•
For very high acceleration up to 50 m/s ²										
For travel speeds up to 5 m/s, up to 10 m travel length	•	٠	•	•	•	•	•	•	•	•
For travel speeds up to 10 m/s, up to 10 m travel length			•	•	•	•	•	•	•	•
For travel speeds up to 5 m/s, up to 100 m travel length	•	٠	0	0	0	0	0	0	•	•
Nominal voltage										
350 Vss		٠								
30/300 V AC										
			•	•	•	•	•	•	•	•
30/300 V AC	•	•	•	٠	•	•	•	•	•	•

B LAPP GROUP

Extracts from Selection Tables

Selection Tables A2

A2: Highly Flexible FD[®] Cables – for use in power chains or robot applications

Application Criteria		Cable	an	d Lo	ead	De	sig	nati	on	
Use in power chains or robot applications	ÖLFLEX [®] SERVO FD 795 CP	SERVO-cable. acc. Indramat Standard INK	ÖLFLEX [®] FD CLASSIC 810	ÖLFLEX [®] FD CLASSIC 810 CY	ÖLFLEX [®] FD CLASSIC 810 P	ÖLFLEX [®] FD CLASSIC 810 CP	ÖLFLEX® FD 820 H	ÖLFLEX [®] FD 820 CH	ÖLFLEX [®] FD ROBUST	ÖLFLEX® FD ROBUST C
Make-up										
Fine wire VDE class 5, copper stranded conductor Superfine wire VDE class 6, copper stranded conductor Ultra fine wire VDE class 6, copper stranded conductor PVC/special PVC, core insulation Elastomer core insulation PE/cellular PE/cellular PE foam skin Polyethylene/Polypropylene TPE core insulation Special TPE (P4/11) core insulation Halogen free compound Number printing VDE colour code DIN 47100 colour code/special colour code Pair screening PICY/PIMF/STP Total screening Special PVC sheath PUR sheath, wear resistant, cutting resistant Rubber sheath	•		•	•	•	•	•	•	•	•
TPE (P4/11) sheath bio oil resistant Halogen free compound							•	•	٠	•

- Principal application
- Application not customary, but possible, or alternative design available in the range
- Temperature range for flexible laying
- Temperature range for static and flexible laying
- = Temperature range for static laying

A2: Highly Flexible FD® Cables - for use in power chains or robot applications

Application Criteria		Cal	ble	and	l Le	ead	De	sig	nat	ion	
Use in power chains or robot applications	ÖLFLEX® FD 855 P	ÖLFLEX [®] FD 855 CP	ÖLFLEX® FD 90	ÖLFLEX® FD 90 CY	UNITRONIC® FD	UNITRONIC® FD CY	UNITRONIC [®] FD P plus	UNITRONIC [®] FD CP plus	UNITRONIC® FD CP (TP) plus	UNITRONIC® FD CP (TP) plus	UNITRONIC® BUS PB FD P
Application											
For industrial machinery		•		•	•	•	•	•	•	•	
to EN 60204, part 1/VDE 0113	-	-	-	-	-	-	-	-	-	-	-
For frequency-converter driven servo drives		0		•							
For servo motor, low capacitance		•									
For encoders, feedback systems, sensors	lo.	õ		-	0	•	0	•	•	•	•
For free arm robots/torsion load					Õ	-		-	-	-	-
Restricted guidance over rollers,											
motor drums		(
For indoor application				٠	٠	٠	٠			٠	
For outdoor application	•	۰							۰	۰	
For field bus systems									0	0	•
For video transmission, RGB signal transmission											
For North America											
with UL + CSA approvals				-			-	-		-	-
For use in oily environments, enhanced oil resistance	•	•		•						•	
For use in areas with bio oils											
Temperature range											
+105 °C											
+90 °C							2				
+80 °C											
+70 °C											
+60 °C											
+5 °C											
-5 °C											
-10 °C											
-20 °C											
-30 °C											
-40 °C											
-50 °C											

B LAPP GROUP

Extracts from Selection Tables

Selection Tables A2

A2: Highly Flexible FD[®] Cables - for use in power chains or robot applications

Application Criteria		Cal	ble	and	d Le	ead	De	sig	nat	ion	
Use in power chains or robot applications	ÖLFLEX® FD 855 P	ÖLFLEX® FD 855 CP	ÖLFLEX® FD 90	ÖLFLEX® FD 90 CY	UNITRONIC [®] FD	UNITRONIC® FD CY	UNITRONIC [®] FD P plus	UNITRONIC [®] FD CP plus	UNITRONIC® FD CP (TP) plus	UNITRONIC [®] FD CP (TP) plus	UNITRONIC [®] BUS PB FD P
Minimum bending radius factor fo	r con	tinı	Jou	s fl	exi	ng					
5 x D											
6.5 x D											
7.5 x D								٠	٠	٠	•
10 x D											•
12.5 x D											
15 x D											•
20 x D											
Laying											
For chains with small radii	•				•	•		•	•	•	•
For chains with restricted space			•	•	•			•	•	•	•
For low cable weight in the chain	•	•	•	•	•	•	•	•	•	•	•
For 24-hour operation at high numbers of cycles	•	•	•	•	•	•	•	•	•	•	•
For high acceleration values > 10 m/s ²	•	•	•	•	•	•	•	•	•	•	•
For very high acceleration up to 50 m/s ²											
For travel speeds up to 5 m/s, up to 10 m travel length	•	•	•	•	•	•	•	•	•	•	•
For travel speeds up to 10 m/s, up to 10 m travel length	•	•	•	•	•	•	•	•	•	•	•
For travel speeds up to 5 m/s, up to 100 m travel length	•	•	0	0	•	•	•	•	•	•	•
Nominal voltage											
350 Vss					•			٠	٠	•	
30/300 V AC											•
300/500 V AC											
600/1000 V AC											
600 V acc. to UL/CSA		1.1									

A2: Highly Flexible FD® Cables - for use in power chains or robot applications

Application Criteria		Cal	ble	and	l Le	ead	De	sig	nat	ion	
Use in power chains or robot applications	ÖLFLEX® FD 855 P	ÖLFLEX [®] FD 855 CP	ÖLFLEX® FD 90	ÖLFLEX® FD 90 CY	UNITRONIC [®] FD	UNITRONIC® FD CY	UNITRONIC [®] FD P plus	UNITRONIC® FD CP plus	UNITRONIC® FD CP (TP) plus	UNITRONIC [®] FD CP (TP) plus	UNITRONIC® BUS PB FD P
Make-up											
Fine wire VDE class 5, copper stranded conductor Superfine wire VDE class 6, copper stranded conductor Ultra fine wire VDE class 6, copper stranded conductor PVC/special PVC, core insulation Elastomer core insulation PE/cellular PE/cellular PE foam skin Polyethylene/Polypropylene TPE core insulation Special TPE (P4/11) core insulation Halogen free compound Number printing VDE colour code DIN 47100 colour code/ special colour code Pair screening PICY/PIMF/STP Total screening Special PVC sheath PUR sheath, wear resistant, cutting resistant	•	•	•	•	•	•	•	•	•	•	•
Rubber sheath TPE (P4/11) sheath bio oil resistant Halogen free compound											

Principal application

- Application not customary, but possible, or alternative design available in the range
- Temperature range for flexible laying
- Temperature range for static and flexible laying
- = Temperature range for static laying

Extracts from Selection Tables

A3: Conveyor Cables

Application Criteria		С	abl	e an	d L	ead	Des	sign	atic	n	
and we want	ÖLFLEX [®] CRANE	ÖLFLEX® LIFT F	ÖLFLEX [®] CRANE F	ÖLFLEX [®] CRANE CF	ÖLFLEX® LIFT	ÖLFLEX® LIFT T	ÖLFLEX [®] LIFT S	ÖLFLEX [®] CRANE 2S	ÖLFLEX [®] CRANE NSHTÖU	ÖLFLEX [®] CRANE VS (N)SHTÖU	ÖLFLEX [®] CRANE PUR
Temperature range											
+90 °C											
+80 °C											
+70 °C											
+60 °C											
+5 °C											
0°C								Т			
-5 °C											
-10 °C								Т			
-15 °C								É.			
-20 °C								Т			
-25 °C											
-30 °C							7	Т			
-40 °C											
Standards											
Based on VDE/HAR/DIN				٠			٠	٠		٠	
With VDE approbation									٠		
With VDE-Registrierung					•						
With HAR-Approbation Flame retardant acc. to											
IFC 60332.1-2											
Application											
For cable trolley guide systems				٠							
Positive guidance over rollers, motor drums											
Reeling re-routing under tension											
For freely suspended application in lift/conveying system	0	0			•	•	•				
For freely suspended application with additional load	•							•		0	0
For indoor application	٠	0		٠				0	٠	٠	٠
For short travel distances indoors		٠		٠		٠	٠	٠		٠	٠
For short travel distances outdoors	٠	٠	٠	٠				٠	٠	٠	٠
For use in power chains											

® LAPP GROUP

A3 Selection Tables

A3: Conveyor Cables

Application Criteria		С	able	e an	d L	ead	Des	sign	atio	on	
	ÖLFLEX [®] CRANE	ÖLFLEX® LIFT F	ÖLFLEX® CRANE F	ÖLFLEX® CRANE CF	ÖLFLEX® LIFT	ÖLFLEX® LIFT T	ÖLFLEX® LIFT S	ÖLFLEX® CRANE 2S	ÖLFLEX® CRANE NSHTÖU	ÖLFLEX® CRANE VS (N)SHTÖU	ÖLFLEX® CRANE PUR
Bending radius											
5 x D											
6.5 x D											
7.5 x D									0	٠	٠
10 x D			٠								
12.5 x D											
15 x D											
20 x D					٠						
Nominal voltage							_	_			
300/500 V			٠		٠						
450/750 V											
600/1000 V											
Make-up											
PVC		٠			•	•	٠	٠			
Rubber			٠				V		٠		
Support core: hemp rope/ textile rope	•				•	•					
Support core: steel rope, internal											
Support core: steel rope, external											
Support core: Kevlar rope					٠						
Outer sheath supporting braid											
PVC sheath		٠	R								
PVC sheath cold fl exible		٠			٠	٠	٠	٠			
Rubber sheath			٠						٠	٠	

Principal application

- O = Application not customary, but possible, or alternative design available in the range
- Temperature range for flexible laying
- Temperature range for static and flexible laying
- = Temperature range for static laying

® LAPP GROUP

Extracts from Selection Tables

Selection Tables A3

A3: Conveyor Cables - ÖLFLEX® CRANE applications

Applicat	ion Criteria			Cal	ble	and	d Le	ad	De	sig	nat	ion	
and the	ant	AND ST.	ÖLFLEX [®] CRANE NSHTÖU	ÖLFLEX [®] CRANE VS (N)SHTÖU	ÖLFLEX [®] CRANE PUR	ÖLFLEX [®] CRANE	ÖLFLEX [®] CRANE CF	ÖLFLEX [®] CRANE 2S	ÖLFLEX® LIFT	ÖLFLEX® LIFT T	ÖLFLEX® LIFT S	ÖLFLEX [®] CRANE F	ÖLFLEX [®] LIFT F
Festoons		MM				•	•					•	•
light stre	ral installation	۲	•	0	•								
medium :	nding reels stress level ral installation ayer)		•	0	•								
high stre	al installation	₽ €		•	•								
Cable wir vertical la	nding reels aying	- I ⊩		•	•								
Cable ter (horizont	ider systems al)	0-0		•	•								
Cable ter (vertical)	ider systems				•								
Guide pu	lley systems			•	•								
Push but	ions	Ì		•	•			•					
Power ch	ains	(0	0	•	0						0	0
Elevator/	Lift										•		•

97

A5: Data transmission cables for low-frequency analog/digital transmissions

Application Criteria				Cak	ole	and	l Le	ad	De	sig	nat	tior			
	UNITRONIC [®] LIYY	UNITRONIC [®] LIYCY	UNITRONIC [®] LIYY (TP)	UNITRONIC [®] LIYCY (TP)	UNITRONIC® PUR CP	UNITRONIC® PUR CP (TP)	UNITRONIC [®] LiHH	UNITRONIC [®] Lihch	UNITRONIC [®] LiHCH (TP)	UNITRONIC® 100	UNITRONIC® 100 CY	UNITRONIC® LIYCY-CY	UNITRONIC [®] LIFYCY (TP)	UNITRONIC® CY PIDY (TP)	UNITRONIC [®] LIYD11Y
Application				_	_	_	_	_	_	_	_	_	_	_	_
Additional control/time				0		0			0						
recording systems (ZK/ZE) Operating data acquisition															
(BDE)				0		0			0						
Clock systems					0	0									
Forced entry alarm systems	0				-	-									
(EMA)	10	0		0			0	0	0			0			•
Fire alarm systems (BMA)															0
Telephone extension						ľ –									0
systems															
Interphone/Duplex systems	0	0		0	0	0	0	0	0			0	0		0
Electroacoustic systems (ELA/PA)															0
Sound studio cable/															
microphone cable	0	0		0	0	0	0	0	0		0	0	0	0	0
Printer/Plotter				0		0		7	0				۰		0
Direct current															
stepping motors						-			-						
Encoder				•		•			•					0	
Industrial sensors, U < 50 Veff	•	•	•	•	•	•	•	•	•	•	•	•	0	•	•
Industrial actuators, U < 50 Veff	•	•	•	٠	•	•	•	٠	•	•	•	•		•	•
Measurement and control system, analog (MSR)	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•
MSR, digital	0	0	0	0	0	0	0	0	0	0	0			0	0
In electronic instruments	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0
For cutting/clipping tech- nology (0.34 mm ² /AWG 22)	•				•	•	•	•		•	•				
Temperature range															
+80 °C															
+70 °C															
+60 °C															
-5°C															
-20 °C															
-30 °C															
-40 °C															
40 0															

® LAPP GROUP

Extracts from Selection Tables

Selection Tables A5

A5: Data transmission cables for low-frequency analog/digital transmissions

	Application Criteria				Cak		200	117	ad	Do	eia	nai	lior			
b0	Application onterna				Jar	ле	and	T L E	au	De	Sig	nai				
remperature range for nextble laying Temperature range for static and flexible laying Temperature range for static laying		UNITRONIC [®] LiYY	UNITRONIC [®] LiYCY	UNITRONIC [®] LiYY (TP)	UNITRONIC [®] LIYCY (TP)	UNITRONIC® PUR CP	UNITRONIC [®] PUR CP (TP)	UNITRONIC [®] Lihh	UNITRONIC [®] Lihch	UNITRONIC [®] LiHCH (TP)	UNITRONIC [®] 100	UNITRONIC® 100 CY	UNITRONIC [®] LiYCY-CY	UNITRONIC [®] LIFYCY (TP)	UNITRONIC [®] CY PIDY (TP)	UNITRONIC [®] LiYD 11Y
atur	Laying		_	_	_	_	_	_	_		_	_	_	_	_	
 Tempera Tempera Tempera 	For static laying outdoors For direct laying underground For static installation (indoors) For flexible laying (indoors) occasionally For continuous flexible	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0
	laying (indoors/outdoors)															
	Make-up					_			_			_			_	_
_ B0	Halogen free							•		•						
Frincipal application Application not customary, but possible, or alternative design available in the range	Flame retardant, self extinguishing For electr. symmetrical signal transmission (TP),	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
but Ile i	twisted pair															-
r∑, ilab	For high end coupling of the pairs, screened															
ava	For electrical screening		-			-	-			-	-		-	-		
on gn	effect, total screening					•			•	•		•			•	•
Principal application Application not cust or alternative design	For low attenuation trans-															
ve o	mission, low capacitance			_												
ion at	With individually screened cores												•			
icat	With combined core pairs/	E				I.	b	C								
ppl r al:	individual conductors With colour code DIN 47100															
1 ₹ 0	With UNITRONIC [®] colour code	•	-	-	-	-	-	-	-		•	•	-	-	-	
	With industrial electronics											-				
	colour code VDE 0815															
p	With star-quad colour code "BD" to VDE 0815/0816															
sar	With pair colour code "LG"															
rurmer narogen free caples and leads on request.	to VDE 0815															
Ca	With special colour code															
ě.	With numbered cores															
rurtner nalogen i leads on request	With PVC/special PVC	•	•									•	•			
equ	outer sheath															
	With PUR sheath, wear resistant, cutting resistant					٠	٠									•
. 0	With PE outer sheath															
e s																

A5: Data transmission cables for low-frequency analog/digital transmissions

Application Criteria			(Cab	le a	nd	Lea	ad I	De	sig	gna	tio	n		
	UNITRONIC® ST	UNITRONIC [®] FD	UNITRONIC® FD CY	UNITRONIC [®] FD P plus	UNITRONIC® FD CP plus	UNITRONIC® FD CP (TP) plus	UNITRONIC® Li2YCY(TP)-Li2YCYv		UNITRONIC® LIZYCY PIMF	JE-Y(ST)Y	JE-LIYCY (TP)	Telephone indoor cable J-Y(ST)Y	Fire alarm cable J-Y(ST)Y red	UNITRONIC [®] J-2Y(ST)Y	Telephone outdoor cable
Application			_	_	_		_		_			_		_	
Additional control/time recording systems (ZK/ZE) Operating data acquisition (BDE)	•									•	•	•		•	0
Clock systems Forced entry alarm systems (EMA)							0		Ы	0	0	•		•	0
Fire alarm systems (BMA)							0		Ы			0	•	0	0
Telephone extension systems					1		0	C	р			•		•	•
Interphone/Duplex systems							٠			0	0	٠		۰	
Electroacoustic systems (ELA/PA)							•		•	0		•		•	•
Sound studio cable/ microphone cable							•		•						
Printer/Plotter		٠	0	٠	0	0	٠			_					
Direct current stepping motors						•	٠				0				
Encoder Industrial sensors,						•	•	1			0		_		
U < 50 Veff		•	•	•	•	•	•			0	0				
Industrial actuators, U < 50 Veff		•	٠	۰	•	•	•	•			0				
Measurement and control system, analog (MSR)		•	•	•		•				0	0			0	0
MSR, digital		٠	٠	٠		٠	٠				0			0	0
In electronic instruments		٠	٠	۲	٠	۲	٠								
For cutting/clipping tech-	•	•	•						Ы	•	•	•	•	•	
nology (0.34 mm ² /AWG 22)	1	1	1				1		·	-		1	1	1	-
Temperature range +80 °C															
+80°C								- Ir							
+60 °C									-	-					
-5 °C								T							
-20 °C															
-30 °C															
-40 °C															

B LAPP GROUP

Temperature range for flexible laying

1

Principal application

.

Further halogen free cables and

Extracts from Selection Tables

Selection Tables A5

A5: Data transmission cables for low-frequency analog/digital transmissions

	Application Criteria			0	ab	le a	nd	Lead	l De	sia	gna	tio	1		
Temperature range for static and flexible laying Temperature range for static laying		UNITRONIC® ST	UNITRONIC [®] FD	UNITRONIC [®] FD CY	UNITRONIC [®] FD P plus	UNITRONIC [®] FD CP plus	UNITRONIC [®] FD CP (TP) plus	UNITRONIC® Li2YCY(TP)-Li2YCYv (TP)	UNITRONIC [®] Li2YCY PIMF	JE-Y(ST)Y	JE-LiYCY (TP)	Telephone indoor cable J-Y(ST)Y	Fire alarm cable J-Y(ST)Y red	UNITRONIC [®] J-2Y(ST)Y	Telephone outdoor cable
ture	Laying														
📕 = Temperai 🔲 = Temperai	For static laying outdoors For direct laying underground For static installation (indoors) For flexible laying (indoors) occasionally For continuous flexible	•	0	0	•	•	•	•	•	•	•	•	•	•	•
	laying (indoors/outdoors) Make-up				-	-	-		-						
 Application not customary, but possible, or alternative design available in the range 	Halogen free Flame retardant, self extinguishing For electr. symmetrical signal transmission (TP), twisted pair For high end coupling of the pairs, screened For electrical screening effect, total screening For low attenuation trans- mission, low capacitance With individually screened cores With combined core pairs/ individual conductors With colour code DIN 47100 With UNITRONIC® colour code With industrial electronics colour code VDE 0815 With star-quad colour code "BD" to VDE 0815/0816	•	•	•	•	•	•		•	•	•	•	•	•	•
iedus oli request.	With pair colour code "LG" to VDE 0815 With special colour code With numbered cores With PVC/special PVC outer sheath With PUR sheath, wear resistant, cutting resistant With PE outer sheath (not flame-retardant)	•	•	•	•	•	•	•	•	•	•	•	•	•	•

102

A6: UNITRONIC®-COAX-/BUS-/LAN-Cables - Interfaces COAX-/BUS-/LAN-Cables

Application Criteria			Cak	ole	and	l Le	ad	De	sig	nat	tior	1	
					B	_							~
1000				UNITRONIC® BUS IBS P COMBI	UNITRONIC® BUS IBS FD P COMBI	UNITRONIC® BUS IBS Yv COMBI							UNITRONIC® BUS PB COMBI 7-W
and the second sec		٦		1	PO	8		Ъ		4		-	MBI
		요	≳	2		≳					2	1	õ
ALL	BS	BS	BS	BS	SS	BS	Q	D.	æ	8	6	8	B
	S	S	S	S	S	S	S	SL	SF	SF	S	SF	SF
	BU	BU	BU	B	B	BU	BU	BU	BU	BU		BU	BU
	JNITRONIC® BUS IBS	JNITRONIC® BUS IBS FD	JNITRONIC® BUS IBS Yv	ů	8	ů	JNITRONIC [®] BUS LD	JNITRONIC® BUS LD FD	JNITRONIC® BUS PB	JNITRONIC® BUS PB FD	JNITRONIC® BUS PB Yv	JNITRONIC® BUS PB 7-W	ů
	S	S	S	8	S	S	S	S	S	S	8	S	N
	ITR	E	E	E	E	E	ITR	ITR	E	IT	E	E	ITR
	S	S	S	S	S	S	S	N	S	S	S	S	S
Application													
suitable for network type to:													
IEEE 802.3 (Ethernet)													
IEEE 802.4 (MAP)													
IEEE 802.5 (IBM)													
ISDN 64 K Bit													
IBM 3270, 3600, 4300													
IBM AS 400, 36, 38													
IBM PC Network													
10 base 5 Ethernet													
10 base 2 Cheapernet													
10 base T (UTP) 100 Ohm													
Token Ring (STP) 150 Ohm													
Token Bus													
Radio/TV								Ζ.					
Video BAS/FBAS													
Video RGB Monitors													
EIA RS 232/V.24							0	0					
EIA RS 422/V.11				-			0	0					
EIA RS 485							•	•					
EIA RS 232/20 mA (TTY)									_				
Standards													
PROFIBUS									•	•	•	•	-
INTERBUS (Phoenix Contact)	-	•	•	-	•	•							
BITBUS (Intel) For LAN installations (IBM,							-	•					
Ethernet etc.)													
With IBM reference approval													
Acc. to DEC specification													
Temperature range													
+205 °C													
+90 °C													
+80 °C													
		-											
+70 °C		-											
+60 °C													
-5 °C								-		-			
-20 °C													

B LAPP GROUP

Extracts from Selection Tables Selection Tables

A6: UNITRONIC®-COAX-/BUS-/LAN-Cables - Interfaces COAX-/BUS-/LAN-Cables

Application Criteria			Cat	ole	anc	l Le	ad	De	sig	nat	tior	1	
	UNITRONIC [®] BUS IBS	UNITRONIC® BUS IBS FD P	UNITRONIC® BUS IBS Yv	UNITRONIC® BUS IBS P COMBI	UNITRONIC® BUS IBS FD P COMBI	UNITRONIC® BUS IBS Yv COMBI	UNITRONIC® BUS LD	UNITRONIC® BUS LD FD P	UNITRONIC® BUS PB	UNITRONIC® BUS PB FD P	UNITRONIC® BUS PB Yv	UNITRONIC® BUS PB 7-W	UNITRONIC® BUS PB COMBI 7-W
Temperature range													
-30 °C													
-40 °C	-			_	-			_			_		
-50 °C													
-190 °C													
Characteristic impedance													
≥ 150 Ohm									•				
≥ 120 Ohm													
≥ 100 Ohm	٠		•	٠		•	٠	•					
≥ 93 Ohm													
≥ 75 Ohm													
≥ 60 Ohm													
≥ 50 Ohm													
Capacity category													
CAT.5 ≤ 100 MHz													
CAT.6 ≤ 250 MHz													
CAT.7 ≤ 600 MHz													
Make-up	1												
PVC sheath													
Halogen free sheath													
PE sheath													
PUR sheath, wear resistant;									-				
cutting resistant	•			•	•			•		•			
Flourpolymer outer sheath													
Laying													
Outdoor laying in air		•			٠					٠			
indirectly in the ground					٠					٠			
Indoor use laid directly				٠		٠	٠	٠	٠		٠		٠
directly in the ground													

Halogen free types see Selection Table A4 in the Main Catalogue.

- Principal application
- Application not customary, but possible, or alternative design available in the range
- Temperature range for flexible laying
- Temperature range for static and flexible laying
- = Temperature range for static laying

Extracts from Selection Tables

B LAPP GROUP

B LAPP GROUP

Extracts from Selection Tables

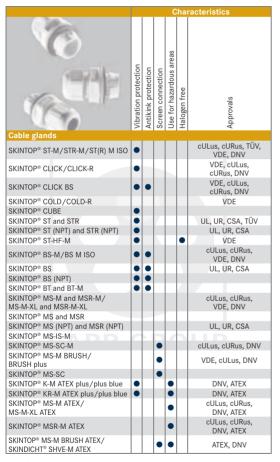
Selection Tables A8

A8: Screw Type Cable Glands - At a glance

		Cł	nara	act	eris	tic	s			
	Protection class IP/NEMA	Connection thread metric	Connection thread PG	Connection thread NPT	for round cables	for fl at cables	Metal	Plastic	Angle	Strain relief
Cable glands										
SKINTOP® ST-M/STR-M/ST(R) M ISO SKINTOP® CLICK/CLICK-R	68/69K 68	•			•			•		•
SKINTOP® CLICK BS	68				٠		٠			
SKINTOP [®] COLD/COLD-R	68				۰					
SKINTOP® CUBE	64				۰			٠		
SKINTOP® ST and STR	68		۰		۰			۰		
SKINTOP® ST (NPT) and STR (NPT)	68			٠	٠			٠		
SKINTOP® ST-HF-M	68				٠			۰		
SKINTOP® BS-M/BS M ISO	68				٠			٠		\bullet
SKINTOP® BS	68		٠		٠			٠		\bullet
SKINTOP® BS (NPT)	68			٠	٠			٠		
SKINTOP® BT and BT-M	68	•	٠		٠			٠		•
SKINTOP [®] MS-M and MSR-M/ MS-M-XL and MSR-M-XL	68/69K NEMA 4/ NEMA 6x	•			•		•			•
SKINTOP® MS and MSR	68		•		•		•			
SKINTOP® MS (NPT) and MSR (NPT)	68			٠	٠		٠			
SKINTOP® MS-IS-M	68	٠			٠		۰			•
SKINTOP® MS-SC-M	68	•			٠		٠			
SKINTOP [®] MS-M BRUSH/ BRUSH plus	68/69K	•			•		•			•
SKINTOP® MS-SC	68		٠		٠		٠			٠
SKINTOP® K-M ATEX plus/plus blue	68				٠			٠		٠
SKINTOP® KR-M ATEX plus/plus blue	68				٠			٠		•
SKINTOP® MS-M ATEX/ MS-M-XL ATEX	68	•			•		•			•
SKINTOP® MSR-M ATEX	68	٠			٠		٠			•
SKINTOP® MS-M BRUSH ATEX/ SKINDICHT® SHVE-M ATEX	68	•			•		•			•

VITON® is a registered trademark of DuPont de Nemour

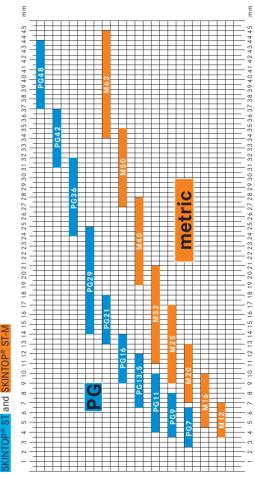
Ocicotion Tubici	3		
A7: UNITRONIC®	BUS	and	ETHERLINE®


Logond

Legend		
7-W	=	7-wire strand
AS-I	=	AS-INTERFACE
COMBI IBS	=	Installation remote bus cable for INTERBUS
DN	=	Device Net
EIB	=	European Installation Bus
FD	=	suitable for power chains
FRNC	=	Flame Retardant Non Corrosive
G	=	rubber outer sheath (EPDM
Н	=	Halogen free material
IBS	=	Remote bus cable for INTERBUS
L2	=	Abbreviation for SINEC [®] L2-DP
LD	=	Long distance
Р	=	Polyurethane outer sheath
PB	=	Profi Bus
PE	=	Polyethylene outer sheath
PROFIBUS-DP	=	Decentralized Periphery
PROFIBUS-FMS	=	Fieldbus Message Specification
PROFIBUS-PA	=	Process Automation
TPE	=	thermoplastic Elastomer
Yv	=	Wire for outdoor use/direct burial with
		reinforced PVC outer sheath
YY	=	double PVC outer sheath

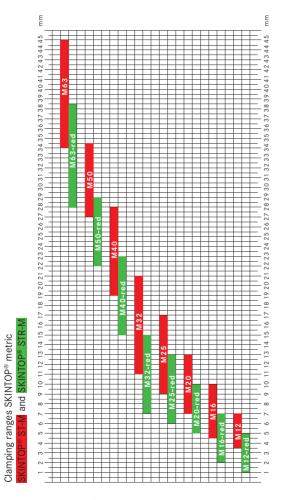
For detailed product information, please consult our current Main Catalogue or our homepage www.lappgroup.com.

LAPP GROUP

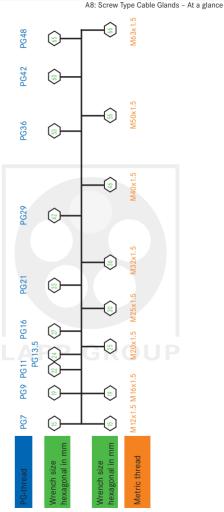

A8: Screw Type Cable Glands - At a glance

VITON® is a registered trademark of DuPont de Nemour

® LAPP GROUP


® LAPP GROUP

Extracts from Selection Tables


A8 Selection Tables

A8: Screw Type Cable Glands - At a glance

SKINTOP[®] ST/SKINTOP[®] ST-M

A11: Applications of HITRONIC® fibre optic components - At a glance

Cable Designation					1	٩p	lica	atic						
	UL approved	Highly flexible	Heat resistant	Limited UV resistant	Heavy duty	Halogen free	Energy and data transmission		PROFIBUS	Bidirectional	data transmission systems	Unidirectional	data transmission systems	SERCOS interface
Lapp Kabel HITRONIC [®] fibre opt	с (I	POF) pi	ogi	am	– f	ibre	e ty	pe,	par	't r	nun	nbe	er
HITRONIC® POF SIMPLEX PE-PUR				•										
POF 980/1000, Part No. 2185 030 HITRONIC [®] POF SIMPLEX PVC														
POF 980/1000, Part No. 2185 201	٠													
HITRONIC [®] POF SIMPLEX S														
PE-PUR POF 980/1000,				•										\bullet
Part No. 2185 205														
HITRONIC® POF SIMPLEX S														_
PA-PUR POF 980/1000, Part No. 2185 204				•	•									•
HITRONIC® POF SIMPLEX PE														
POF 980/1000, Part No. 2185 001				•										
HITRONIC® POF SIMPLEX FD														
PE-PUR POF 980/1000,		\bullet		٠										
Part No. 2185 207	_				_						_		_	
HITRONIC [®] POF DUPLEX FD PE-PUR POF 980/1000,														
Part No. 2185 213											1			
HITRONIC® POF SIMPLEX 105 °C														
XPE POF 980/1000,			۰	٠										
Part No. 2185 202											_			
HITRONIC [®] POF DUPLEX PE POF 980/1000, Part No. 2185 010				•		•		•	•					
HITRONIC [®] POF DUPLEX HEAVY										_				
PE-PUR POF 980/1000, Part No. 2185 211														
HITRONIC [®] POF DUPLEX PE-PVC														
POF 980/1000, Part No. 2185 209									•	•				
HITRONIC [®] POF DUPLEX PVC-PVC														
POF 980/1000, Part No. 2185 210								-	-					
HITRONIC [®] POF DUPLEX PE-PUR				•		•		•	•					
POF 980/1000, Part No. 2185 040				-		-		-	-					
HITRONIC [®] POF MULTI FIBRE PE-PVC, Part No. 3036 010				٠										
HITRONIC® FD P DESINA®														
4x1.5 + 2xPOF 980/1000,				٠		•	•							
Part No. 2186 001														

LAPP GROUP

Extracts from Selection Tables

A11: Applications of HITRONIC® fibre optic components - At a glance

Cable Designation						٩p	lica	atic	on					
	UL approved	Highly flexible	Heat resistant	Limited UV resistant	Heavy duty	Halogen free	Energy and data transmission	INTERBUS	PROFIBUS	Bidirectional	data transmission systems	Unidirectional	data transmission systems	SERCOS interface
Lapp Kabel HITRONIC [®] fibre c	pti	c (F	CF) pi	rog	ran	١							
HITRONIC® BUS PCF DUPLEX indoor, Part No. 2185 311 HITRONIC® BUS PCF DUPLEX outdoor, Part No. 2185 302								•	•					
Lapp Kabel HITRONIC [®] fibre o	inti	c ((OF) n	rog	rar	n							
HITRONIC [®] HQN Outdoor Cable (A-DQ(ZN)B2Y) HITRONIC [®] HIH Indoor Cable				•		•								
(J-D(ZN)H)						•								
HITRONIC [®] HUN Universal Cable (J/A-DQ(ZN)BH)						•								
HITRONIC [®] HRH Breakout Cable (AT-V(ZN)HH)						•								
HITRONIC [®] HDH Mini-Breakout Cable (J-V(ZN)H)						•								
HITRONIC [®] FD Mobile Cable (AT-VQ(ZN)11Y)		•												

LAPP GROUP

® LAPP GROUP

Extracts from Selection Tables

Selection Tables A13

A13: Cables for expanded ambient temperatures

A12: Applicability of Servo Cables in	Powe	er D	rive	Sys	tem	ns (F	PDS)					
	ervice	Power Drive	Systemes	CEIM	JE VV	CIENTERIC	OIEINIEINO			I ENIZE	LEINZE	Unidenhain	
	Type of service	Line	Motor	Power	Signal	Power	Signal	Power	Signal	Power	Signal	Power	Signal
Cable type													
ÖLFLEX [®] SERVO 700													
ÖLFLEX [®] SERVO 700 CY													
ÖLFLEX [®] SERVO 709 CY								0					
ÖLFLEX [®] SERVO 720 CY	60												0
ÖLFLEX [®] SERVO 730	xin	•											
ÖLFLEX® SERVO 730 CY	fle		٠										
ÖLFLEX [®] SERVO 2YSLCY	static run or flexing									0			
low Capacitance	LUL		-										
ÖLFLEX [®] SERVO 9YSLCY	tic									0			
low Capacitance	sta		-										
Servo-Ltg. acc. to SEW				•									
Standard static													
SERVO-cable acc.						٠	\bullet						
to Siemens FX5 Serie			1										

- Principal application
- Application not customary, but possible, or alternative design available in the range

Siemens part designations (6FX5002/5008, 6FX7002/7008, 6FX8002/8008) are registered trademarks of Siemens AG and for comparing purpose only. Indramat part designations (IKG, IKS, INK, INS, RKL und RKG) are registered trademarks of Bosch Rexroth AG and for comparing purpose only. Lenze® part designations (EWLM_, EWLE_, EWLL_, EWLL_, EVL und EYP) are registered trademarks of Lenze® AG used for comparing purposes only. SEW and SEW Eurodrive are registered trademark of SEW Eurodrive GmbH & Co KG, Ernst-Blickle Str. 42, D-76646 Bruchsal. Heidenhain, Elau, KEB, Controles Techniques, Berger Lahr, B & R, Fanuc and others are registered trademarks of its Owner, printed for comparing purpose only.

For more assemblies, refer to Main Catalogue. For detailed product information, please consult our current Main Catalogue or our homepage www.lappgroup.com.

Application Outputs				0												
Application Criteria				G	able	e ai	na	_ea	۵L	Jes	gn	atio	JN			
	ÖLFLEX [®] HEAT 105 MC	ÖLFLEX [®] HEAT 145 MC	ÖLFLEX [®] HEAT 145 C MC	ÖLFLEX [®] HEAT 180 SiHF	ÖLFLEX® HEAT 180 H05SS-F EWKF	ÖLFLEX [®] HEAT 180 MS	ÖLFLEX [®] HEAT 180 C MS	ÖLFLEX [®] HEAT 180 EWKF	ÖLFLEX [®] HEAT 180 EWKF C	ÖLFLEX [®] HEAT 180 GLS	ÖLFLEX [®] HEAT 205 MC	ÖLFLEX [®] HEAT 260 MC	ÖLFLEX [®] HEAT 260 C MC	ÖLFLEX® HEAT 260 GLS	ÖLFLEX [®] HEAT 350 MC	ÖLELEX® HEAT 1565 MC
Application																
External and internal cabling of machinery Internal wiring in cabinets	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
In dry rooms			•		•	•		•	•			•			•	
In dry and damp rooms															-	
For outdoor use, fixed installed and mech. protected	•	•	•	•	•	•	•	•	•		•	•	•			
Highest chemical																
resistance							_				-	-	-	•		
In EMI critical areas			•				•		•				•			
Suitable for the use											0		•			
in paint shop lines												_				
Temperature range +1565° C			_	_	_	_	_	_		_	_	_	_			Þ
+1565°C +400°C																
+350° C									- 4							
+300° C																
+260° C																
+200 °C							\boxtimes									
+180 °C																
+145 °C			\boxtimes			_				_						
+125 °C																
+105 °C																
+90 °C																
-20 °C																
-35 °C																
-50 °C																
-80 °C																
	1															E
-100 °C																
-100 °C -140 °C -190° C																

® LAPP GROUP

B LAPP GROUP

114

A 13: Cables for expanded ambient temperatures

Application Criteria				C	abl	e ai	nd	Lea	ıd D)es	ign	atio	on			
	ÖLFLEX [®] HEAT 105 MC	ÖLFLEX® HEAT 145 MC	ÖLFLEX® HEAT 145 C MC	ÖLFLEX [®] HEAT 180 SiHF	ÖLFLEX [®] HEAT 180 H05SS-F EWKF	ÖLFLEX® HEAT 180 MS	ÖLFLEX® HEAT 180 C MS	ÖLFLEX [®] HEAT 180 EWKF	ÖLFLEX® HEAT 180 EWKF C	ÖLFLEX [®] HEAT 180 GLS	ÖLFLEX [®] HEAT 205 MC	ÖLFLEX® HEAT 260 MC	ÖLFLEX® HEAT 260 C MC	ÖLFLEX® HEAT 260 GLS	ÖLFLEX® HEAT 350 MC	ÖLFLEX® HEAT 1565 MC
Nominal voltage																
300/500 V	•	•	٠	•	٠	٠	٠	٠	•	٠	٠	٠	•	•	٠	
450/750 V		٠	۰													
600/1000 V		0	0													
10 kV																
600 V according UL/CSA																
Standards																
Halogen free according IEC 60754-1		•	•	•	•	•	•	•	•	•						
Low smoke density according IEC 601034		•	•													
Low smoke toxicity according NES 02-713		•	•													
Flame retardant according IEC 60332-1-2	•	•	•	•	•	•	•	•	•	•	0	0	0	0	•	•
Low flame propagation according IEC 60332.3		•	•													
Based on VDE/HAR/DIN With HAR certification	•			•				•	•	٠	٠	٠	•		٠	•
With UL/CSA certification						•	•									
With GL resp. DNV certification		•	•											•		

B LAPP GROUP

Extracts from Selection Tables

Selection Tables A13

A13: Cables for expanded ambient temperatures

Application Criteria				С	able	e ai	nd I	Lea	d D)es	ign	atio	on			
	ÖLFLEX [®] HEAT 105 MC	ÖLFLEX [®] HEAT 145 MC	ÖLFLEX® HEAT 145 C MC	ÖLFLEX [®] HEAT 180 SiHF	ÖLFLEX® HEAT 180 H05SS-F EWKF	ÖLFLEX® HEAT 180 MS	ÖLFLEX® HEAT 180 C MS	ÖLFLEX [®] HEAT 180 EWKF	ÖLFLEX® HEAT 180 EWKF C	ÖLFLEX® HEAT 180 GLS	ÖLFLEX [®] HEAT 205 MC	ÖLFLEX® HEAT 260 MC	ÖLFLEX [®] HEAT 260 C MC	ÖLFLEX® HEAT 260 GLS	ÖLFLEX [®] HEAT 350 MC	ÖLELEY® HEAT 15.65 MC
Make-up																
Solid conductor according VDE 0295 Class 1 Fine wired according																
VDE 0295 Class 5	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
PVC core insulation/ sheath, heat resistant	•															
Halogen free special core insulation/sheath		•	•													
Silicone core insulation/sheath				•	•	•	•	•	•	•						
Silicone, notch resistant (EWKF) sheath					•			•	•							
Fluoropolymer core insulation/sheath (FEP/PTFE)											•	•	•	•		
Glass fibre insulation/sheath															•	
Core number printing according VDE 0293		•	•	•		•	•	•	•	•						
Core colour code according VDE 0293-308	•	•		•	•	•	•	•	•	•	•	•	•	•	•	
Individual colours																
Common			•				•		•				•			
copper screening			-				-		1				-			
Steel wire armouring																

- Principal application
- Application not customary, but possible, or alternative design available in the range
- Temperature range for flexible laying
- Temperature range for static and flexible laying
- = Temperature range for static laying
- Image: Temperature range for static laying (short-term)

® LAPP GROUP

Technical Tables

T1: Chemical resistance of cable sheaths

		Cable ar	nd Lead Desig	gnatio	
The information is given to the best of our knowledge and experience, but must be regarded as being for the guidance only. A definite judgement depends in most cases on tests under actual working conditions. All values are for +20 °C		ÖLFLEX® CLASSIC 100, -115 CY, ÖLFLEX® SERVO 700, -700 CY, -2YSLCY, -720, -730, -730 CY, UNITRONIC® 100, -EB, -9YSLCY	ÖLFLEX [®] FD 90, FD 90, CY, ÖLFLEX [®] 140, 140 CY, ÖLFLEX [®] 140, 140 CY, 150, 150 OLMTRO, -191, -191 CY, ÖLFLEX [®] 140, 140 CY, 150, 150 OLMTRO, -191, -191 CY, ÖLFLEX [®] 150 SI 791 CY, ÖLFLEX [®] GENTRO, 700 CY, ÖLFLEX [®] SERVO FD 781 CY, ÖLFLEX [®] CONTROL TM/TM CY, SERVO ables acc. SEW, SIEMENS FX 5008 Standard	ÖLFLEX® CLASSIC 110 SY, ÖLFLEX® CLASSIC 100 CY, ÖLFLEX® CLASSIC 110 SY, -110 CY	ÖLFLEX® CLASSIC 400 P. 400 CP. 415 CP. 440 P. 440 CP. 450 P500 P540 CP540 P550 P. ÖLFLEX® SERVO FD 750, -755, -755 CP, 760, -770, -785, -790 CP, 795 P/CP
Inorganic chemicals	Conc.				
Alums	CS.				
Aluminium salts	a.c.				
Ammonia, aqu.	10 %				
Ammonium acetate, aqu.	a.c.				
Ammonium carbonate, aqu.	a.c.				
Ammonium chloride, aqu.	a.c.				
Barium salts	a.c.				
Boric acid, aqu.					
Calcium chloride, aqu.	CS.				
Calcium nitrate, aqu.	CS.				
Chromium salts, aqu.	CS.				
Potassium carbonate, aqu. (potash)					
Potassium chlorate, aqu.	CS.				_
Potassium chloride, aqu.	CS.				
Potassium dichromate, aqu.					
Potassium jodide, aqu.					
Potassium nitrate, aqu.	CS.				
Potassium permanganate, aqu.					
Potassium sulfate, aqu.					
Copper salts, aqu.	CS.				
Magnesium salts, aqu.	CS.				
Sodium bicarbonate, aqu. (soda)					
Sodium bisulphite, aqu.					
Sodium bisulphite, aqu. Sodium chloride, aqu. (cooking salt)					
Sodium bisulphite, aqu. Sodium chloride, aqu. (cooking salt) Sodium thiosulphate, aqu. (fixing salt)					
Sodium bisulphite, aqu. Sodium chloride, aqu. (cooking salt)	cs. 50 %				

® LAPP GROUP

Extracts from Technical Tables

Technical Tables

T1: Chemical resistance of cable sheaths

			TT: Chem	lical resistance	or cable	e sneaths
			Cable ar	nd Lead Desig	gnatio	n _
in aqueous solution any concentration cold saturated	The information is given to the best of our knowledge and experience, but must be regarded as being for the guidance only. A definite judgement depends in most cases on tests under actual working conditions. All values are for +20 °C		ÖLFLEX® CLASSIC 100, -115 CY, ÖLFLEX® SERVO 700, -700 CY, -2YSLCY, -720, -730, -730 CY, UNITRONIC® 100, -EB, -9YSLCY	ÖLFLEX® FD 90, FD 90 CY, ÖLFLEX® 140, 140 CY, ÖLFLEX® 140, 140, CY, 150, 150, OUATIRO, -191, -191 CY, ÖLFLEX® FD 891/891 CY, 1491, JÖLFLEX® SERVO 709 CY, ÖLFLEX® SERVO FD 781 CY, ÖLFLEX® CONTROL I'M/IM CY, SERVO Kabel nach SEW, SIEMENS FX 5008 Standard	ÖLFLEX® CLASSIC 110 SY, ÖLFLEX® CLASSIC 100 CY, ÖLFLEX® CLASSIC 110 SY, -110 CY	ÖLFLEK® CLASSIC 400 P, -400 CP, -415 CP, -440 P, -440 CP, -450 P, -500 P, -540 CP, -550 P, ÖLFLEX® SERVO FD 750, -755, -755 CP, 760, -770, -785, -790 CP, 795 P/CP
in aqueous sol any concentra cold saturated	Inorganic chemicals	Conc.				
ncei	Mercury salts, aqu.	CS.				
que cor I sa	Nitric acid	30 %				
n a any solo	Hydrochloric acid	conc.				
	Sulphur	100 %				
aqu.= a.c. = cs. =	Sulphur dioxide, gaseous					
ç a a	Carbon disulphide					
	Hydrogen sulphide					
ц.	Sea water					
ant	Silver salts, aqu.	2.07			_	
ant esis [:] sisti	Hydrogene peroxide	3 %				
e re res	Zinc salts, aqu. Stannous chloride					
good resistant moderate resistant less/not resistant	Organic chemicals					
bod ss/	Ethyl alcohol	100 %				
	Formic acid	30 %				
	Gasoline	00,0		-		
- 5	Succinic acid, aqu.	cs.				
no to slight reaction slight to average reaction average to strong reaction	Acetic acid	20 %				
on eac rea	Hydraulic oil					
ing ng	Isopropyl alcohol	100 %				
rea erag stro	Machine oil					
no to slight reaction slight to average rea average to strong re	Methyl alcohol	100 %				
ge sli	Oxalic acid, aqu.	CS.				
o to ghi era	Cutting oil					
	Vegetable oil and fats					
	Tartaric acid, aqu.					
	Citric acid					

® LAPP GROUP

Technical Tables

118

T1: Chemical resistance of cable sheaths

		Cable and Lead	De	signat	ion
The information is given to the best of our knowledge and experience, but must be regarded as being for the guidance only. A definite judgement depends in most cases on tests under actual working conditions. All values are for +20 °C		ÖLFLEX* FD CLASSIC 810 P810 CP855 P855 CP, ÖLFLEX* ED 891 P891 CP, ÖLFLEX* Robot 900, F1, UNITRONIC* FD P, ÖLFLEX* CRANE PUR, UNIRONIC* INTO 117, UNITRONIC* FD D. NUTTRONIC* FD PG FUP, HITRONIC* POF, with PUR-sheath, UNITRONIC* FD pius types, UNITRONIC* POK, SERVO cables acc. SIEMENS Standard FX7, FA8 PLUS Standard	ÖLFLEX [®] CRANE round and flat	ÖLFLEX® LIFT T, LIFT S, ÖLFLEX® CRANE 2S, ÖLFLEX® LIFT F, ÖLFLEX® SF, Single core LiFY	Halogen-free cables and leads NUITRONIC" H(ST)H, NHXMH, ÖLFLEX" 120 H, 120 CH, 130 H, 135 CH 130 H BK 0,6/1 KV, 135 CH BK 0,6/1 KV, ÖLFLEX" EP 820 H
Inorganic chemicals	Conc.				
Alums	CS.				
Aluminium salts	a.c.				
Ammonia, aqu.	10 %				
Ammonium acetate, aqu.	a.c.				
Ammonium carbonate, aqu.	a.c.				
Ammonium chloride, aqu.	a.c.				
Barium salts	a.c.				
Boric acid, aqu.					
Calcium chloride, aqu.	CS.				
Calcium nitrate, aqu.	CS.	-			
Chromium salts, aqu.	CS.				
Potassium carbonate, aqu. (potash)		PDAL			
Potassium chlorate, aqu.	CS.	-			
Potassium chloride, aqu.	CS.				
Potassium dichromate, aqu.					
Potassium jodide, aqu.					
Potassium nitrate, aqu.	CS.				
Potassium permanganate, aqu.					
Potassium sulfate, aqu.	00				
Copper salts, aqu. Magnesium salts, aqu.	CS. CS.				
Sodium bicarbonate, aqu. (soda)	65.				
oourum picarponate, auu, (SOUd)			H		
Sodium bisulphite, aqu.					
Sodium bisulphite, aqu. Sodium chloride, aqu. (cooking salt)					
Sodium bisulphite, aqu. Sodium chloride, aqu. (cooking salt) Sodium thiosulphate, aqu. (fixing salt)	68				_
Sodium bisulphite, aqu. Sodium chloride, aqu. (cooking salt)	cs. 50 %				

® LAPP GROUP

Extracts from Technical Tables

Technical Tables

T1: Chemical resistance of cable sheaths

			Cable and Lead	De	signat	ion
im auteonomission any contration cold saturated	The information is given to the best of our knowledge and experience, but must be regarded as being for the guidance only. A definite judgement depends in most cases on tests under actual working conditions. All values are for +20 °C		ÖLFLEX* ED CLASSIC 810 P, -810 CP, -855 P, -855 CP, ÖLFLEX* ED 891 P, -891 CP, ÖLFLEX* Robot 900, -F1, UNITRONIC* ED P, ÖLFLEX* CRAME PUR, UNIRRONIC* LYD 11Y, UNITRONIC* ED CP, UNITRONIC* FD puis types, UNITRONIC* PDF with PUR-sheath, UNITRONIC* FD puis types, UNITRONIC* PUR, SERVO cables acc. SIEMENS Standard FX7, Fx8 PLUS Standard	ÖLFLEX® CRANE round and flat	ÖLFLEX® LIFT T, LIFT S, ÖLFLEX® CRANE 2S, ÖLFLEX® LIFT F, ÖLFLEX® SF, Single core LiFY	Halogen-free cables and leads UNITRONC® +HSTPH, NHXMH, ÖLFLEX® 120 H, 120 CH, 1310 H, 135 CH, 130 H BK 0,6/1 KV, 135 CH BK 0.6/1 KV, ÖLFLEX® FD 820 H
in aqueous sol any concentra cold saturated	Inorganic chemicals	Conc.				
ous icer tura	Mercury salts, aqu.	CS.				
cor cor	Nitric acid	30 %				
old n a	Hydrochloric acid	conc.				
= 10 0	Sulphur	100 %				
aqu.= a.c. = cs. =	Sulphur dioxide, gaseous		_			_
ຮັດຮັ	Carbon disulphide	_	•			
	Hydrogen sulphide					
-	Sea water					
good resistant moderate resistant less/not resistant	Silver salts, aqu.	3 %				
sist	Hydrogene peroxide Zinc salts, agu.	3 %				
e res	Stannous chloride		ND OIL			
ret not	Organic chemicals					
good resistant moderate resistan less/not resistant	Ethyl alcohol	100 %				
	Formic acid	30 %				
	Gasoline	00 //				
- 5	Succinic acid, aqu.	CS.				
no to slight reaction slight to average reaction average to strong reaction	Acetic acid	20 %				
eac	Hydraulic oil					
no to siight teaction slight to average rea average to strong re	Isopropyl alcohol	100 %				
erag	Machine oil					
gnt ave to s	Methyl alcohol	100 %				
ge ge	Oxalic acid, aqu.	CS.				
ight 'era	Cutting oil					
	Vegetable oil and fats					
	Tartaric acid, aqu.					
	Citric acid					

® LAPP GROUP

® LAPP GROUP

Extracts from Technical Tables Technical Tables T3

T3: Assembly Guidelines

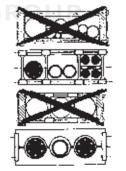
T3 Technical Tables T3: Assembly Guidelines

OI FLEX® FD- and UNITRONIC® FD Cables in Power Chain Systems

1. The choice of the power chain system (also cable track system) must be made in accordance with the needs of the required cables.

Note: It is very recommendable not to make use of cables with multi-layer construction if possible, e.g. > 25 cores, but to assign the necessary cores to a higher number of cables.

- 2. The minimum permissible bending radii of the cables must be strictly adhered to (please, find further appropriate information in the Technical Data of our Catalogue under bending radius for flexible use).
- 3. The cables must be laid out without twisting into the power chain system. Therefore, please, never pull off one cable end overhead from drums and coils which rest on their sides, but unroll the cables from the drum or the coil and lay them out or suspend them, if necessary. For the use in power chain systems, we recommend only to withdraw cables directly from drums standing or hanging vertically.


Warning: Along the cables, the imprints run gently spirally around their surfaces, conditionally of manufacturing. Therefore, the printing cannot be used as an indicator of the twist-free straightening of the cables. When the cables are drawn in, the chains should be laid out longitudinally. Afterwards, the power chains loaded with cables can be brought into operating position.

4. The cables must lie loosely next to each other in the chain stays. As far as possible they should be arranged individually, disjoined via separators and placed within individual holders in the neutral zone of the chain. The free space for the cables in the chain stay should be at least 10 per cent of the cable diameter. Arranging cables one above the other without using separators should be avoided.

Note: In case of a vertically suspended chain arrangement more free space must be provided regarding the height of the chain stay. because the cables are extended during operation. After a short period of operation, the length adjustment of the cables must be checked and. if necessary, corrected.

OI FLEX[®] FD- and UNITRONIC[®] FD Cables in Power Chain Systems

5. The cables must not be fixed or tied together in the chain.

6. The cables should be connected at both ends of the chain. In the case of long power chains with top trunks lying on and rubbing against bottom trunks, the cables may only be connected at the driven. The bending of the cables must not include their connection points. The distance between the end point of the bending movement and the connection point should be as large as possible (in the case of ÖLFLEX® SERVO ED 750 P. -760 CP and UNITRONIC® FD minimum 20 times the cable diameter. In the case of ÖLFLEX® ED CLASSIC, ÖLFLEX® FD, ÖLFLEX® SERVO FD 755 P -795 P and ÖLELEX® ED ROBUST minimum 10 times the cable diameter).

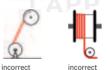
SKINTOP® cable glands to be tightened by hand only (without using a tool). Avoid bruising of the cables.

7. Please, make sure, that the cables can move absolutely freely in the bending section of the power chain. Compulsory guide of the cables via the power chain must be excluded. so that relative movement of the cables with respect to each other and to the guide is possible. It is recommendable to check the position of the cable after a brief period of operation. This inspection must take place after thrust and tension movement.

- 8. If a power chain breaks, the cables must also be replaced, because damage due to excessive stretching cannot be ruled out
- 9. In case your horizontally installed power chain will be long enough to have the top trunk gliding on top of the bottom trunk it is very important to allocate the cables within the chain in a way that horizontally symmetric distribution of the total weight of the cables is guaranteed. Only by respecting this rule, it is assured, that the top trunk will not cant in the bottom trunk through torsion of the top trunk as a conseauence of one-sided weight distribution inside of it. Disregarding of this advice dramatically reduces cycle life of the power chain system.

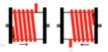
September 2009

® LAPP GROUP


Extracts from Technical Tables

T4 Technical Tables

T4: Assembly Guidelines


ÖLFLEX® CRANE NSHTÖU, ÖLFLEX® CRANE VS (N)SHTÖU and ÖLFLEX® CRANE PUR

- The delivery drum should be transported as close as possible to the installation site. It should be also avoided to roll the drum needlessly over longer distances. If the drum can't be mounted closely enough on the plant or equipment it is necessary to unreel the cable with the aid of idler pulleys by using a drag rope and a cable holding sleeve.
- During unreeling process the cable may only pulled off straight from the top of pivot-mounted revolving drums. High tensile forces must be avoided and also the cable may not deflected or dragged over sharp edges. The c able temperature may not be below +5 °C during this procedure (normative reference to VDE 0298).
- 3. Before cable assembling the whole cable installation length must be completely laid-out and stretched. It is very important not to rewind the cable directly from the shipping drum on the equipment drum. (see also chapter 4). When the cable is in laid position S-bends or other deflections must beavoided.

 The cable must be reeled on the reeling drum without any twists. It is also very important to avoid tersion during composition and

It is also very important to avoid torsion during connection and fastening to the infeed. The core layer design of reelable ÖLFLEX[®] CRANE cables is manufactured with a S-stranding direction of the cores. Depending on the position of the cable infeed resp. junction at the winding reel body it is highly recommended to observe the correct cable winding direction on the reeling drum as displayed on the illustration below:

- 5. If the infeed point is passed over during operation it will be necessary to use a compensating pulley of appropriate diameter carrying 1 - 2 cable windings. If the infeed is underground below the surface it will be necessary to provide a diverting funnel above the compensating pulley.
- 6. It is essential to use sufficiently proportioned clamps or cable holding sleeves (length ≥ 4 × D) for fastening the cable at the end of the travel length in order to prevent crushing. The length of cable left unreeled before the fastening point must be at least 40 × D but it is advisable to use also here a compensating pulley.
- At least 2 cable windings must remain on the equipment drum when the cable has been completely run out by reaching the maximum travel distance.
- For ÖLFLEX[®] CRANE NSHTÖU cables with an outside diameter of up to 21.5 mm the inner bending diameter should not be less then 10 times and above that figure 12.5 times the cable diameter. With ÖLFLEX[®] CRANE VS (N)SHTÖU

LAPP GROUP

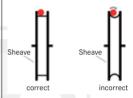
Extracts from Technical Tables

Technical Tables T4

T4: Assembly Guidelines

ÖLFLEX® CRANE NSHTÖU, ÖLFLEX® CRANE VS (N)SHTÖU and ÖLFLEX® CRANE PUR

the inner bending diameter must generally be at least 15 times the cable diameter. With ÖLFLEX® CRANE PUR the inner bending diameter should not be less than 15 times the cable diameter. The minimum bending radius is specified on the corresponding Catalogue page resp. in the product data sheet.


9. S-bends in the cable must be avoided. However if this proves impossible in the case of cables with an outside diameter of up to 21.5 mm the center spacing of the two idlers must be at least 20 times and for those above 21.5 mm at least 25 times the cable diameter.

- The permissible reeling speed may be up to v = 2 m/sec at an acceleration of up to a = 0.4 m/sec².
- 11. The static continuous tension load should not exceed 15 N/mm² of the total copper cross-section and the dynamic peak tensile force may not exceed 25 N/mm². For cables with very thick outer diameters it is recommended to use guide rollers to reduce high friction of the cable jacket during directional change.

Using sheaves the inner contact face may not have a concave shape to avoid cable twisting which can be caused due to permantent extensive jacket contact with the inner sheave surface. To ensure correct cable running the inner width of the guiding groove must be 10 - 15 % larger than the outer diameter of the cable.

- The actual current rating (I) in continuous operation depends on - the conductor cross-section (I_{mm})
 - the ambient temperature (f.)
 - the amount of cable reeled on the drum (f_2)

The maximum permissible strain imposed on the installed cable is obtained from the following formula:

 $I = I_{max} \times f_1 \times f_2$

13. The cables fulfil the requirements of VDE 0250. Further stress will limit the service life of the cable.

BLAPP GROUP

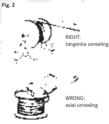
T5 Technical Tables

T5: Assembly Guidelines

Lift Control Cables Type ÖLFLEX® LIFT, ÖLFLEX® LIFT T, ÖLFLEX® LIFT S

A General Notes

- Cables installation should be done twist-free and at temperatures not below +5 °C. Power ampacity: see VDE 0298-4 / Lapp Table T12-1 column C.
- 2. The inner bending radius of the cable must not be less than 40 times cable diameter.
- Maximum suspension height depends on the carrying core (see specifications). The maximum load must not be exceeded by more then 10 per cent.
- The transporting drum should be driven to the application place. If possible, avoid rolling the drum. Otherwise the drum must be rolled on the floor only in the direction given in Figure 1.


124

direction of movement

B Suspending the Cables

- When suspending the cables in the shaft, unreel them tangentially. Unreeling axially leads to cable torsion and interferences with the core twisting. This results in disturbances during operation (see Figure 2).
- In order to guarantee torsion-free suspension, the cable must be loosely suspended in the shaft before final installation. This can be done best by installing the cable from the shaft bottom.
- The free space between lift cabin and shaft bottom must be sufficiently large. It has to be used for the cable loop (see Figure 3).

LAPP GROUP


Extracts from Technical Tables

T5: Assembly Guidelines

Lift Control Cables Type ÖLFLEX[®] LIFT, ÖLFLEX[®] LIFT T, ÖLFLEX[®] LIFT S

C Installing the Cables

- It is indispensable to use large clamps for cable installation (for example Lapp wedged clamps type EKK or DKK). With suspension heights of 50 m and more the carrying core has to be damped separately.
- The cable must be mounted to the shaft wall at least 2 m above half the driving length.

In case of unsteady movement, i.e. leaving the drop line during operation, the control cable must be twisted slightly at one of the mounting points until proper cable movement has been achieved.

 If several control cables have to be installed in the lift device, it is recommended for technical reasons to install the cables in a way that the loops have height distances about 15 cm (stepwise suspension).

® LAPP GROUP

® LAPP GROUP

Extracts from Technical Tables

Technical Tables T6

T6: Type Abbreviations

Harmonised Cables

		□ -			
1 2	3 4	5	6	7	8 9

1. Basic type

- н harmonised type
- А national type

2. Rated voltage

- 01 100 / 100 Volt 03 300/300Volt 05 300 / 500 Volt
- 07 450 / 750 Volt

3. Insulation material

- **PVC** V
- PVC +90 °C V2
- V3 PVC cold-flexible
- в Ethylenpropylen rubber
- F PE Polyethylene х XPE, crosslinked PE
- R Rubber
- S Silicone rubber

4. Outer/inner sheath material

- V **PVC**
- V2 PVC +90 °C V3 PVC cold-flexible
- V5 PVC with enhanced oil resistance
- R Rubber
- Ν Chloroprene rubber
- 0 Polyurethane
- Glass fibre braid
- Т Textile braid

5. Special features

- C4 Copper screen braiding
- н Flat cable, separable
- H2 Flat cable, not separable
- H6 Flat cable, not separable,
- for lifts Helical/spiral cable H8

6. Conductor type

- U Single wire
- R Multi-wire
- К Fine wire (static)
- F Fine wire (flexible)
- н Superfine wire
- Y Tinsel wire
- D Fine wire core for
- welding cable F
- Superfine core for welding cable

7. Number of cores

... No. of cores

8. Protective conductor

- х without protective conductor
- G with protective conductor
- 9. Conductor cross section

in mm²

ÖLFLEX® CRANE NSHTÖU - VDE approved, 24-core with protective conductor, cross-section 1.5mm²

Example: H05 VV-F 3G 1.5 medium PVC sheathed cable 3-core with protective conductor, cross-section 1.5 mm²

Current information www.lappgroup.com/products

7 8

4. Special features

Support wire

resistant

Flame-retardant

a limited time

Enhanced oil resistance

Heat resistant, weather

Insulation retained for

Т

Ö

U

۱۸/

FF

х

6

1. Basic type

2 3 4 5

T6 Technical Tables

T6: Type Abbreviations

Control Cables

> Ν VDF standard (N) or X as per VDF

2. Insulation material

- Υ Thermoplastic resins
- Crosslinked thermoplastic Х resins
- G Flastomers
- Halogen-free materials ΗХ

3. Cable designation

- А Cored cable
- D solid wire
- ΔF Fine wire cored cable
- F Socket core
- L. Fluorescent tube cable 1 H Connecting cable light
- mechanical load MH Connecting cable
- medium mechanical load SH Connecting cable
- heavy mechanical load
- SSH Connecting cable special load
- SL Control cable/welding cable
- S Control cable
- LS Light control cable
- FL Flat cable
- Si Silicone cable
- Ζ Twin calbe

126

- GL Glass filament
- Li Stranded core to VDE 0812
- LiF Stranded core to VDE 0812. superfine wire

S Steel wire braid as mechanical protection

5. Sheaths

as point 2. Insulating material P/PUR polyurethane

6. Protective conductor

- -0 without protective conductor
- -1 with protective conductor

7. Number of cores

No. of cores

in mm²

8. Conductor cross-section

® LAPP GROUP

5. Sheath material

(see 3, insulation)

6. Number of elements

7. Stranding elements

8. Conductor diameter ... in mm

2 Pair

Single core

... number of stranding elements

T6 Technical Tables

T6: Type Abbreviations

Telephone Cables and Leads

		-					х 🗌	x [
1	2		3	4	5	6	7		8	9	10	

1. Basic type

- А Outside cable
- Mine cable
- Installation cable T
- Li Rubber sheathed cable
- S lumper cable

2. Additional information

- В Lightning protection make-up
- 1 Induction protection
- Е Electronics

3. Insulation material

- Y PVC
- 2Y Polyethylene
- O2Y Cellular-PE
- 5Y PTFE
- 6Y FEP
- 7Y ETFE
- Ρ Paper

4. Make-up features

- F Petroleum ielly filling
- 1 Aluminium sheath
- LD Corrugated AI sheath
- (L) Aluminium strip
- (ST) Metal foil screen
- (K) Copper strip screen
- (C) Copper braid screen
- (Z) Steel wire braid
- W Corrugated steel sheath
- Μ Lead sheath
- Mz Special lead sheath
- b Armouring
- С Jute sheath + ground
- Е Ground layer + strip

9. Stranding element F

- star-guad (railway) St
- star-guad (phantom) StL
- star-quad (trunk cable)
- StIII star-quad (local cable) TF
- star-guad for TF
- S signal cable (railway)
- PiMF screened pair

10. Type of stranding

- Lg twisted in lavers
- Bd twisted in bundles

® LAPP GROUP

Extracts from Technical Tables

Technical Tables T6

T6: Type Abbreviations

Fibre optic cables complying with VDE 0888

1	2 -	□ □ □ □ x 3 4 5 6	x 7 8 9 10 11
1.	Basic type		5. Number of fibres
	A AT	Outdoor cable	
	AI I	Outdoor cable, divisible Indoor cable	6. Fibre type G Gradient fibre glass/glass
	I	Indoor cable	G Gradient fibre glass/glass E Monomode fibre glass/glass
2	Fibres		S Stepped fibre glass/glass
2.	D	Bundled cores, filled	K Stepped fibre glass/glass
	V	Full core	R Otepped hore glassy plastic
	H	Loose tube, unfilled	7. Fibre core diameter
	W	Loose tube, filled	
	В	Bundled cores, unfilled	8. Fibre sheath diameter
3.	Other stru	uctural elements	9. Attenuation coefficient in dB/km
	F	Petroleum jelly filling	
	Q	Swelling tape	10.Optical window
	S	Metal element	A 650 nm
		in cable core	B 850 nm
			F 1300 nm
4.	Sheath		H 1550 nm
	2Y	PE sheath	11. Bandwidth in MHz and
	(L)2Y (D)2Y	Layered sheath PE sheath with	dispersion in ps/nm/km
	(D)21	plastic barrier layer	dispersion in ps/ init/ kin
	(ZN)2Y	PE sheath with non-	
	(214)21	metallic strain relief	
		elements	
	(L)(ZN)2Y		GROUP
		non-metallic strain	
		relief elements	
	(D)(ZN)2Y	PE sheath with plastic	
		barrier layer and non-	
		metallic strain relief	
		elements	
	В	Armouring	
	BY	Armouring with	
		PVC casing	
	B2Y	Armouring with	
		PE casing	

Extracts from Technical Tables T7 Technical Tables

T7: Core Ident Code for ÖLFLEX® cables

Colour code for Öl El EX[®] cables

Applicable for the following cables with 6 or more cores: ÖL FL FX® CLASSIC 100. ÖLFLEX® CLASSIC 100 CY. ÖLFLEX® CLASSIC 100 SY and ÖLFLEX® CLASSIC 100 BK Power 0.6/1 KV. It contains colours and colour combinations of up to 102 cores.

Bas	ic colours		Bas	ic (
0	green-yellow		31	br
1	white		32	gr
2	black		33	re
3	blue		34	pii
4	brown		35	or
5	grey		36	tra
6	red		37	be
7	violet			
8	pink		Bas	
9	orange		38	gr
10	transparent		39	re
11	beige		40	
			41	pi
	ic colours with wh	nite spiral	42	
12	black-white		43	tra
13	blue-white		44	be
	brown-white			
15	grey-white		Bas 45	
	red-white		45	vio
	violet-white		40	
18	pink-white			pi
19	0		48 49	ora
20	transparent-white		49 50	
21	beige-white		50	be
Bas	ic colours with blac	k spiral	Bas	ic (
22	blue-black	·	51	or
23	brown-black		52	tra
24	grey-black		53	be
25	red-black			
26	violet-black		Bas	
27	pink-black		54	P
28	orange-black		55	
29	transparent/black		56	tra
30	beige-black			

colours with blue spiral rown-blue rey-blue ed-blue ink-blue range-blue ansparent-blue eige-blue colours with brown spiral rev-brown ed-brown iolet-brown ink-brown range-brown ransparent-brown eige-brown colours with grev spiral ed-grey iolet-grey ink-grey range-grey ransparent-grey eige-grey colours with red spiral range-red ansparent-red eige-red colours with violet spiral

® LAPP GROUP

and consists of 11 basic colours.

The variations in the basic colours are

made by one or two 2 mm wide colour

spirals.In this way each core can be

distinguished easily from the others.

For cables with up to 5 cores see T9.

ink-violet range-violet ransparent-violet

® LAPP GROUP

Extracts from Technical Tables

Technical Tables T7

T7: Core Ident Code for UNITRONIC® cables

Colour code for UNITRONIC[®]100 cables

This contains colours and colour combinations up to 102 cores and consists of 10 basic colours. The variation in the basic colours is

Basic colours

1 black

3 brown

4 beige

5 yellow

6 green 7 violet

8 pink

9 orange

10 transparent

11 red-white

12 blue-white

13 vellow-white

14 green-white

15 violet-white

16 orange-white

17 brown-white

18 blue-red

19 yellow-red

20 green-red

21 white-red

22 orange-red

23 brown-red

24 red-black

25 blue-black

26 yellow-black

27 green-black

28 violet-black

29 white-black

30 orange-black

31 brown-black

Basic colours with black spiral

2 blue

0 green-vellow

achieved by one or two 2 mm wide colour spirals or by ringmarking. In this way each core is easily distinguishable from the others.

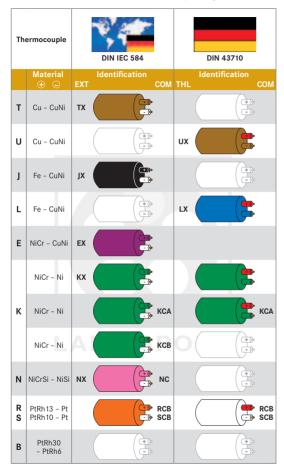
Basic colours with green spiral 32 red-green 33 grey-green 34 violet-green 35 white-green 36 orange-green 37 brown-green Basic colours with yellow spiral 38 red-vellow 39 blue-yellow 40 violet-yellow 41 white-yellow Basic colours with white spiral 42 brown-yellow Basic colours with blue spiral 43 red-blue 44 white-blue 45 orange-blue 46 brown-blue Basic colours with red spiral 47 yellow-viole 48 green-viole 49 white-violet 50 orange-viol 51 brown-viole

Basic colours with violet spiral

et	
t	
et	
et	

Basic colours black, variegated spiral

- 52 black-white 53 black-yellow 54 black-red
 - 55 black-green
 - 56 black-blue
 - 57 black-violet



Current information www.lappgroup.com/products

T8 Technical Tables

B LAPP GROUP

T8: International Colour Codes for Extension and Compensating Cables

EXT = Extension Cables COM = Compensating Cables

132

LAPP GROUP

Extracts from Technical Tables

T9: Core Ident Code according to VDE Colour Code

VDE 0293-308/HD 308 S2 Conductor ident code for colour coded low voltage multiconductor cables and cords

Marking of the conductors of lowvoltage multiconductor cables and cords of portable equipment as well as for electrical installation and distribution systems. 3a und 4a: for special applications only.

1 Number of con- ductors	2 Cables and cords having protective conductor (Abbreviations: J or G)	3 Cables and cords without protective conductor (Abbreviations: O or X)	4 Cables having concentric conductor design
2	-	BU/BN	BU/BN
3	GNYE/BN/BU	BN/BK/GY	BN/BK/GY
3a	-	BU/BN/BK	BU/BN/BK
4	GNYE/BN/BK/GY	BU/BN/BK/GY	BU/BN/BK/GY
4a	GNYE/BU/BN/BK		
5	GNYE/BU/BN/BK/GY	BU/BN/BK/GY/BK	BU/BN/BK/GY/BK
6	GNYE/BK	BK	BK
and	having printed	having printed	having printed
more	numbers	numbers	numbers

VDE0293 former Colour Code for Power Cables – (colour abbreviations are listed in IEC 60757)

Marking of the cores in multi-core and multi-wire cables for connecting

mobile and portable equipment.

1 Number of con- ductors	2 Cables with green-yellow identified core (harmonized)	3 Cables without green-yellow identified core (not yet harmonized)	4 Cables with concentric conductors
2	-	BN/BU	-
3	GNYE/BN/BU	BN/BU/BK	-
3	-	BN/BK/GY	-
4	GNYE/BK/BU/BN	BK/BN/BU/BK	-
4	GNYE/BN/BK/GY	BU/BN/BK/GY	-
5	GNYE/BK/BU/BN/BK	BK/BN/BU/BK/BK	-
5	GNYE/BU/BN/BK/GY	BU/BN/BK/GY/BK	-
6 and more	GNYE/other cores black with numbering from inside beginning with 1, GNYE in the outer layer	Black cores with numbering, from inside beginning with 1.	-

LAPP GROUP

T9: Core Ident Code according to DIN Colour Code

DIN 47100/January 1988 – Colour code for UNITRONIC[®] twisted pairs

Each pair comprises one a-core and one b-core. From 23 pairs upwards the marking repeats for the first time and from 45 pairs upwards for the second

® LAPP GROUP

time. The first colour is always the basic colour of the core and the second colour is printed in rings.

Pair No.	Colour a-core	Colour b-core
1	white	brown
2	green	yellow
3	grey	pink
4	blue	red
5	black	violet
6	grey/pink	red/blue
7	white/green	brown/green
8	white/yellow	yellow/brown
9	white/grey	grey/brown
10	white/pink	pink/brown
11	white/blue	brown/blue
12	white/red	brown/red
13	white/black	brown/black
14	grey/green	yellow/grey
15	pink/green	yellow/pink
16	green/blue	yellow/blue
17	green/red	yellow/red
18	green/black	yellow/black
19	grey/blue	pink/blue
20	grey/red	pink/red
21	grey/black	pink/black
22	blue/black	red/black
23 - 44	see 1-22	see 1-22
45 - 66	see 1-22	see 1-22

T9 Technical Tables

T9: Core Ident Code according to VDE Colour Code

VDE0293 former Colour Code for Power Cables – (colour abbreviations are listed in IEC 60757)

Marking of the cores in multi-core and multi-wire cables for static installation

1 Number of con- ductors	2 Cables with green-yellow identified core (Abbreviations: J)	3 Cables without green-yellow identified core (Abbreviations: 0)	4 Cables with concentric conductors
2	-	BK/BU	BK/BU
3	GNYE/BK/BU	BN/BU/BK	BK/BU/BN
3	-	BN/BK/GY	-
4	GNYE/BK/BU/BN	BK/BN/BU/BK	BK/BU/BN/BK
4	GNYE/BN/BK/GY	BU/BN/BK/GY	-
5	GNYE/BK/BU/BN/BK	BK/BN/BU/BK/BK	-
5	GNYE/BU/BN/BK/GY	BU/BN/BK/GY/BK	-
6 and more	GNYE/other cores black with numbering from inside beginning with 1, GNYE in the outer layer	Black cores with numbering, from inside beginning with 1.	Black cores with numbering, from inside beginning with 1.

LAPP GROUP

T9 Technical Tables

B LAPP GROUP

Technical Tables T9

T9: Core Ident Code according to VDE Colour Code

DIN 47100 Colour Code (but in contrast to DIN: without colour repetition after the 44th core)

Exception: 4-core cord: white, yellow, brown, green.

Core No.	Colour	Core No.	Colour
1	white	32	yellow/blue
2	brown	33	green/red
3	green	34	yellow/red
4	yellow	35	green/black
5	grey	36	yellow/black
6	pink	37	grey/blue
7	blue	38	pink/blue
8	red	39	grey/red
9	black	40	pink/red
10	violet	41	grey/black
11	grey/pink	42	pink/black
12	red/blue	43	blue/black
13	white/green	44	red/black
14	brown/green	45	white/brown/black
15	white/yellow	46	yellow/green/black
16	yellow/brown	47	grey/pink/black
17	white/grey	48	red/blue/black
18	grey/brown	49	white/green/black
19	white/pink	50	brown/green/black
20	pink/brown	51	white/yellow/black
21	white/blue	52	yellow/brown/black
22	brown/blue	53	white/grey/black
23	white/red	54	grey/brown/black
24	brown/red	55	white/pink/black
25	white/black	56	pink/brown/black
26	brown/black	57	white/blue/black
27	grey/green	58	brown/blue/black
28	yellow/grey	59	white/red/black
29	pink/green	60	brown/red/black
30	yellow/pink	61	black/white
31	green/blue		

The first colour indicates the basic colour of the core insulation, the second colour indicates the colour of the printed ring. Where three colours are indicated, the second and third colours are printed on the basic colour.

T9: Core Ident Code according to DIN Colour Code

Colour Code UNITRONIC[®] 300 & 300 CY (20 – 16 AWG)

Core No.	Colour	Core No.	Colour
1	black	26	white/black/green
2	red	27	white/black/yellow
3	white	28	white/black/blue
4	green	29	white/black/brown
5	orange	30	white/black/orange
6	blue	31	white/black/gray
7	brown	32	white/black/violet
8	yellow	33	white/black/black
9	violet	34	white/red/black
10	gray	35	white/red/red
11	pink	36	white/red/green
12	tan	37	white/red/blue
13	red/green	38	white/red/brown
14	red/yellow	39	white/red/violet
15	red/black	40	white/green/black
16	white/black	41	white/green/red
17	white/red	42	white/green/green
18	white/green	43	white/green/blue
19	white/yellow	44	white/green/brown
20	white/blue	45	white/green/violet
21	white/brown	46	white/blue/black
22	white/orange	47	white/blue/red
23	white/gray	48	white/blue/green
24	white/violet	49	white/blue/blue
25	white/black/red	50	white/blue/brown

LAPP GROUP

BLAPP GROUP

T9 Technical Tables

138

T9: Core Ident Code according to VDE Colour Code

Colour Code UNITRONIC[®] 300 & 300 CY (24 – 22 AWG)

Core No.	Colour	Core No.	Colour
1	black	26	white/black/violet
2	brown	27	white/black/gray
3	red	28	white/brown/red
4	orange	29	white/brown/orange
5	yellow	30	white/brown/yellow
6	green	31	white/brown/green
7	blue	32	white/brown/blue
8	violet	33	white/brown/violet
9	gray	34	white/brown/gray
10	white	35	white/red/orange
11	white/black	36	white/red/yellow
12	white/brown	37	white/red/green
13	white/red	38	white/red/blue
14	white/orange	39	white/red/violet
15	white/yellow	40	white/red/gray
16	white/green	41	white/orange/yellow
17	white/blue	42	white/orange/green
18	white/violet	43	white/orange/blue
19	white/gray	44	white/orange/violet
20	white/black/brown	45	white/orange/gray
21	white/black/red	46	white/yellow/green
22	white/black/orange	47	white/yellow/blue
23	white/black/yellow	48	white/yellow/violet
24	white/black/green	49	white/yellow/gray
25	white/black/blue	50	white/green/blue

LAPP GROUP

LAPP GROUP

Extracts from Technical Tables

Technical Tables T10

T10: Core Ident Code: VDE Colour Code for Telephone Cables

VDE 0815 and 0816 Unit Twisted

Colour Code for Cable Types J-2Y(ST)Y, A-2YF(L)2Y, A-2Y(L)2Y Star-quad bundles

The marking of the cores is by means of rings quad of a unit.

Side 1 a-core b-core	without ring	
Side 2		
a-core	T I	I I
b-core		

Basic colours of the core insulation for the 5 quads

Quad 1 red Quad 2 green Quad 3 grey Quad 4 yellow Quad 5 white

The number units are marked with red spirals.

VDE 0815

Colour Code for Indoor Telephone Cables J-Y(ST)Y ... LG (Pairs in layers, counting from outside to inside).

a-core: pairs in each layer red, by all other pairs white.

b-core: blue, yellow, green, brown, black in continual repetition. Supposition: The two paired installation cable is star quad stranded.

Side 1 (pair 1): a-core red b-core black

Side 2 (pair 2): a-core white b-core yellow

VDE 0815

Colour Code for Industrial Electronic Cables JE-... Marking:

The cores of these pairs are marked by the basic colours of the insulating sheath, which are repeated in the same sequence in each unit:

Basic colours of the pairs: Pair 1 2 3 4 a-core blue grey green white b-core red yellow brown black

The units are marked in groups with the colour of the rings on the core insulation sheaths and the arrangement of the coloured rings. The ring groups are spaced approximately 60 mm apart.

In cables with more than 12 units the 13th and the subsequent units have coloured spirals.

T10: Core Ident Code: VDE Colour Code for Telephone Cables

Unit	Ring colour	Ring group	Unit spiral
1	pink		-
2	pink	п	-
3	pink	ш	-
4	pink		-
5	orange	I	-
6	orange	п	-
7	orange		-
8	orange		-
9	violet	I	-
10	violet	11 11	-
11	violet	III III III	-
12	violet		-
13	pink	I	blue
14	pink		blue
15	pink	<u> </u>	blue
16	pink		blue
17	orange	I	red
18	orange	n	red
19	orange	<u> </u>	red
20	orange		red

® LAPP GROUP

Extracts from Technical Tables

T11: Conductor Resistances and Conductor Make-up (metric)

Conductor Resistances and Conductor Make-up (metric)

copper-conductors in single- and multi- 60228 (VDE 0295).

Conductor Resistances: for annealed- | core cables ≥ 0.5 mm² acc. to DIN EN

Nominal	Conductor resistance for 20 $^{\circ}\text{C}$ for 1 km in Ω (maximum value)					
cross- section in mm ²		of metal coated copper wire		opper wire		
	Class 2	Class 5 + 6	Class 2	Class 5 + 6		
0.08		250.0		243.0		
0.14		142.0		138.0		
0.25		82.0		79.0		
0.34		59.0		57.0		
0.5	36.7	40.1	36.0	39.0		
0.75	24.8	26.7	24.5	26.0		
1	18.2	20.0	18.1	19.5		
1.5	12.2	13.7	12.1	13.3		
2.5	7.56	8.21	7.41	7.98		
4	4.70	5.09	4.61	4.95		
6	3.11	3.39	3.08	3.30		
10	1.84	1.95	1.83	1.91		
16	1.16	1.24	1.15	1.21		
25	0.734	0.795	0.727	0.780		
35	0.529	0.565	0.524	0.554		
50	0.391	0.393	0.387	0.386		
70	0.270	0.277	0.268	0.272		
95	0.195	0.210	0.193	0.206		
120	0.154	0.164	0.153	0.161		
150	0.126	0.132	0.124	0.129		
185	0.100	0.108	0.0991	0.106		
240	0.0762	0.0817	0.0754	0.0801		
300	0.0607	0.0654	0.0601	0.0641		
400	0.0475	PGR	0.0470	P		
500	0.0369		0.0366			
630	0.0286		0.0283			
800	0.0224		0.0221			
1000	0.0177		0.0176			

® LAPP GROUP

T11: Conductor Resistances and Conductor Make-up (metric)

Examples of Conductor Make-up (metric)

Cross section in mm ²	Multi-Wire Strands	Multi-Wire Strands	Fine-Wire Strands
0.14			
0.25			~ 14 x 0.15
0.34		7 x 0.25	~ 19 x 0.15
0.38		7 x 0.27	~ 12 x 0.20
0.5	7 x 0.30	7 x 0.30	~ 16 x 0.20
0.75	7 x 0.37	7 x 0.37	~ 24 x 0.20
1.0	7 x 0.43	7 x 0.43	~ 32 x 0.20
1.5	7 x 0.52	7 x 0.52	~ 30 x 0.25
2.5	7 x 0.67	~ 19 x 0.41	~ 50 x 0.25
4	7 x 0.85	~ 19 x 0.52	~ 56 x 0.30
6	7 x 1.05	~ 19 x 0.64	~ 84 x 0.30
10	7 x 1.35	~ 49 x 0.51	~ 80 x 0.40
16	7 x 1.70	~ 49 x 0.65	~ 128 x 0.40
25	7 x 2.13	~ 84 x 0.62	~ 200 x 0.40
35	7 x 2.52	~ 133 x 0.58	~ 280 x 0.40
50	~ 19 x 1.83	~ 133 x 0.69	~ 400 x 0.40
70	~ 19 x 2.17	~ 189 x 0.69	~ 356 x 0.50
95	~ 19 x 2.52	~ 259 x 0.69	~ 485 x 0.50
120	~ 37 x 2.03	~ 336 x 0.67	~ 614 x 0.50
150	~ 37 x 2.27	~ 392 x 0.69	~ 765 x 0.50
185	~ 37 x 2.52	~ 494 x 0.69	~ 944 x 0.50
240	~ 37 x 2.87	~ 627 x 0.70	~ 1225 x 0.50
300	~ 61 x 2.50	~ 790 x 0.70	~ 1530 x 0.50
400	~ 61 x 2.89		~ 2035 x 0.50
500	~ 61 x 3.23		~ 1768 x 0.60
630	~ 91 x 2.97		~ 2286 x 0.60
Single-Wire Strar	d Multi-Wire	Strands Fine-W	/ire Strands
	0 📄	38 🛛	

Normative references:

Single-Wire	Conductor (Class 1), see DIN EN 60228 (VDE 0295), Table 1
Multi-Wire	Conductor (Class 2), see DIN EN 60228 (VDE 0295), Table 2
Fine-Wire	Conductor (Class 5), see DIN EN 60228 (VDE 0295), Table 3

Technical Tables

T11: Conductor Resistances and Conductor Make-up (metric)

Examples of Conductor Make-up (metric)

Cross section in mm ²	Super-Fine-Wire Strands			
0.14	~ 18 x 0.10	~ 18 x 0.1	~ 36 x 0.07	~ 72 x 0.05
0.25	~ 32 x 0.10	~ 32 x 0.1	~ 65 x 0.07	~ 128 x 0.05
0.34	~ 42 x 0.10	~ 42 x 0.1	~ 88 x 0.07	~ 174 x 0.05
0.38	~ 21 x 0.15	~ 48 x 0.1	~ 100 x 0.07	~ 194 x 0.05
0.5	~ 28 x 0.15	~ 64 x 0.1	~ 131 x 0.07	~ 256 x 0.05
0.75	~ 42 x 0.15	~ 96 x 0.1	~ 195 x 0.07	~ 384 x 0.05
1.0	~ 56 x 0.15	~ 128 x 0.1	~ 260 x 0.07	~ 512 x 0.05
1.5	~ 84 x 0.15	~ 192 x 0.1	~ 392 x 0.07	~ 768 x 0.05
2.5	~ 140 x 0.15	~ 320 x 0.1	~ 651 x 0.07	~ 1280 x 0.05
4	~ 224 x 0.15	~ 512 x 0.1	~ 1040 x 0.07	
6	~ 192 x 0.20	~ 768 x 0.1	~ 1560 x 0.07	
10	~ 320 x 0.20	~ 1280 x 0.1	~ 2600 x 0.07	
16	~ 512 x 0.20	~ 2048 x 0.1		
25	~ 800 x 0.20	~ 3200 x 0.1		
35	~ 1120 x 0.20			
50	~ 705 x 0.30			
70	~ 990 x 0.30			
95	~ 1340 x 0.30			
120	~ 1690 x 0.30			
150	~ 2123 x 0.30			
185	~ 1470 x 0.40			
240	~ 1905 x 0.40			
300	~ 2385 x 0.40			
400				
500				
630				
Single-Wire Strand Super-Fine-Wire Strands				

Normative references:

Single-Wire Conductor ... (Class 1), see DIN EN 60228 (VDE 0295), Table 1 Super-Fine-Wire Conductor ... (Class 6), see DIN EN 60228 (VDE 0295), Table 4

B LAPP GROUP

T12 Technical Tables

T12: Power Rating - Basic Table

Table 12-1: Power rating

Of wires & cables having nominal voltage up to 1000 V and heat resistant wire & cables, ambient temperature +30 $^\circ\text{C}$

	Cable or lead category					
	A Single core cable • rubber insulated • PVC insulated • TPE insulated • heat resistant	B Multi core cables and cords fo home- and portable apparatus • rubber insulated • PVC insulated • TPE insulated				
Method of installation) //// (2000) //////////////////////////////////			
Number of current carrying conductors	1 ³⁾	2	3			
Nominal cross section in mm ²	Current rating in A	Current rati	ng in A			
0.081)	1.5	-	-			
0.141)	3		-			
0.251)	5	-	-			
0.341)	8	-	-			
0.5	122)	3	3			
0.75	15	6	6			
1.0	19	10	10			
1.5	24	16	16			
2.5	32	25	20			
4	42	32	25			
6	54	40	-			
10	73	63	-			
16	98	-	-			
25	129	-	-			
35	158	-	-			
50	198	-	-			
70	245	-	-			
95	292	-	-			
120	344	-	-			
150	391	-	-			
185	448	-	-			
240	528	-	-			
300	608	-	-			
400	726	-	-			
500	830	-	-			
Sources of current ratings of Table 12-1:	DIN VDE 0298-4, 2003-08 Table 11 Column 2	DIN VDE 0298-4 Table 11 Colur				

B LAPP GROUP

Extracts from Technical Tables

Technical Tables T12

T12: Power Rating - Basic Table

Table 12-1: Power rating

Of wires & cables having nominal voltage up to 1000 V and heat resistant wire & cables, ambient temperature +30 $^\circ\text{C}$

	Cable or lead catego	ory			
	C Multicore cables + cords, excl. home + portable apparatus • rubber insulated • PVC insulated • TPE- insulated • heat resistant	D Multicore heavy duty rubber cables ≤ 0.6/1kV Single core special rubber cables 0.6/1kV or 1.8/3kV			
Method of installation					
Number of current	2 or 3	3	1 ³⁾		
carrying conductors					
Nominal cross section in mm ²	Current rating in A	Current rat	ting in A		
0.081)	1				
		-	-		
0.141) 0.251)	2 4	-	-		
			-		
0.341)	6 - 9 ²⁾ -		-		
0.5	,	-	-		
0.75	12	-	-		
1.0	15	-	-		
1.5	18	23	30		
2.5	26	30	41		
4	34	41	55		
6	44	53	70		
10	61	74	98		
16	82	99	132		
25	108	131	176		
35	135	162	218		
50	168	202	276		
70	207	250	347		
95	250	301	416		
120	292	-	488		
150	335	-	566		
185	382	-	644		
240	453	-	775		
300	523	-	898		
400	-	-	-		
500	-	-	-		
Sources of current	DIN VDE 0298-4, 2003-08	DIN VDE 0298			
ratings of Table 12-1:	Table 11 Column 5	Table 15 Column 4 + 2			

LAPP GROUP

T12 Technical Tables

T12: Power Rating – Basic Table

Note:

Design of Tables 12 to 13 deviates from VDE 0298-4 design. In case of doubt, appliance of the current issue of the DIN VDE 0298-4 is obligatory. Table 12-1 values have to be taken into consideration of further applicable converting/derating factors:

- Other ambient temperatures: Table 12-2
- more then 3 current carrying cores of multiconductor cables up to 10 mm²: Table 12-3
- Ambient temperatures > 50 °C of heat resistant wire & cables: Table 12-4
- for winded, spooled cables: Table 12-5
- Grouping of singe core & multi core cables in conduits, raceways, wire ways, floor & ceiling: Table 12-6
- Grouping of multi core cables in cable trays: Table 12-7
- Grouping of single core cables in cable trays: Table 12-8

Table 12-1 Column A – D, Cable Categories:

- A: Singe cores: LiY, LiYCY-EA, H05V-K, H07V-K, H07V2-K, H07Z-K, Multistandard wiring cable, ÖLFLEX® HEAT 105, -145, ÖLFLEX® HEAT 180 and ÖLFLEX® HEAT 205/260 wires/single core cables.
- B: Multicore cables & service cords for home- and portable apparatus: ÖLFLEX® CLASSIC 100, H05VV-F, 450 P, 500 P 540 P, H05RR-F , H05RN-F, H05BQ-F, H07BQ-F
- C: Multi core power and control cables excluding home and portable apparatus: All ÖLFLEX®, ÖLFLEX® CRANE-, ÖLFLEX® HEAT-, ÖLFLEX® HEAT 180-, ÕLFLEX® HEAT 205/260- cables,

D: Multi core heavy duty rubber cables U0/U \leq 0.6/1kV: ÖLFLEX® CRANE NSHTÖU, ÖLFLEX® CRANE VS, NSHTÖU, NSSHÖU, ÖLFLEX® HEAT-Multicore cables. Single core special rubber cable U0/: 0.6/1kV or 1.8/3 kV: NSGA FÖU, NSHXAFÖU; ÖLFLEX® HEAT® 145 single core cables.

Current (power) ampacity of other cables:

Copper earthing cable ESUY see VDE 0105 part 1 H07RN-F/A 07RN-F/H07BQ-F for industrial use: see Catalogue Table T12-9. Welding cable H01N2-D see Catalogue Table T12-10.

Cables for building wiring: NYM, NHX-MH, NYY, NYCY, NYCWY, NHXHX see VDE 0298-4, 2003-08, Table 3 & 4. Cables & wires in machines: see DIN EN 60204-1/VDE 0113-1 Cabels & wires in machines for USA: see National Electrical Code & NFPA 79, Table 13

- ¹⁾ VDE 0891-1 -borrowed current ratings for conductor sizes < 0.5mm² (0.08 - 0.34 mm²)
- ²⁾ In terms of VDE 0298-4, 2003-08, Table 11 column 2 extended range
- for size 0.5 mm².
- ³⁾ Clustering of single core cables in touch to each other or bundled cables:
 - on surfaces: Current rating values of Table 12-1 column A or D,
 - for 1~A.C. or or D.C.-circuits a derating factor of 0.76
 - for 3~A.C. circuits a derating factor of 0.67 have to be applied before applying conversion factor of Table 12-6

LAPP GROUP

Extracts from Technical Tables

Technical Tables T12

T12: Power Rating - Basic Table

- free in air or on cable trays: Current rating values of Table 12-1 column A or D,
- for 1~A.C. or D.C. circuits a derating factor of 0.8
- for 3~A.C. circuits a derating factor of 0.7 have to applied be fore applying conversion factor of Table 12-8
- Attention: Single cores (wires) installed in conduits or pipes in or attached to walls (Installation Methode A1 or B1) in buildings see VDE 0298, Tables 3 or 5, column 2, 3, 6, or 7 & Table 21

LAPP GROUP

T12 Technical Tables

T12: Power Rating - Reduction Tables

Table 12-2: Correction Factors

For ambient temperatures different to 30 °C. For heat resistant cables and

wires see Table T12-4 (in accordance to DIN VDE 0298-4, 2003-08, Table 17).

Rated temperature of the conductor of wire or cable (See product page of the Catalogue, Technical Data, Temperature range: upper value for static and /or flexing)								
	60°C 70°C 80°C 85°C 90°C							
Ambient temperature in °C	a	Correction factor, applicable to current value of T12-1						
10	1.29	1.22	1.18	1.17	1.15			
15	1.22	1.17	1.14	1.13	1.12			
20	1.15	1.12	1.10	1.09	1.08			
25	1.08	1.06	1.05	1.04	1.04			
30	1.00	1.00	1.00	1.00	1.00			
35	0.91	0.94	0.95	0.95	0.96			
40	0.82	0.87	0.89	0.90	0.91			
45	0.71	0.79	0.84	0.85	0.87			
50	0.58	0.71	0.77	-	0.82			
55	0.41	0.61	0.71	-	0.76			
60	-	0.50	0.63	-	0.71			
65	-	0.35	0.55		0.65			
70	-	-	0.45	-	0.58			
75	-	-	0.32	-	0.50			
80	-	-	-	-	0.41			
85	-			-	0.29			

Table 12-3: Correction Factors

for multiconductor cables and cords, having condcutor size up to 10 mm²

(DIN VDE 0298-4, 2003-08. Table 26).

Number of current carrying conductors	Correction factors for cables in free air	Correction factors for cables in earth (burial)
5	0.75	0.70
7	0.65	0.60
10	0.55	0.50
14	0.50	0.45
19	0.45	0.40
24	0.40	0.35
40	0.35	0.30
61	0.30	0.25

B LAPP GROUP

Extracts from Technical Tables

Technical Tables T12

T12: Power Rating - Reduction Tables

Table 12-4: Correction factors of heat resistant cables and wires

(See prod	es classified acco uct page of the age, for upper va	Catalogue "Tec	hnical Data, Tei	mperature
	ÖLFLEX® HEAT 105 H07V2-K ÖLFLEX®-FD ROBUST H07Z-K 90 °C	Halogen free single core H07Z-K 110 °C	ÖLFLEX [®] HEAT 145	ÖLFLEX® HEAT 180 Silicone rubber
Ambient			lying to curren	
temperature in °C	Table 12-		or D for heat	resistant
	(Source		3-4, 2003-08, Ta	
up to 50	1.00	1.00	1.00	1.00
55	0.94	1.00	1.00	1.00
60	0.87	1.00	1.00	1.00
65	0.79	1.00	1.00	1.00
70	0.71	1.00	1.00	1.00
75	0.61	1.00	1.00	1.00
80	0.50	1.00	1.00	1.00
85	0.35	0.91	1.00	1.00
90	-	0.82	1.00	1.00
95	-	0.71	1.00	1.00
100	-	0.58	0.94	1.00
105	-	0.41	0.87	1.00
110	-	-	0.79	1.00
115	-	-	0.71	1.00
120	-	-	0.61	1.00
125	-	-	0.50	1.00
130	-	-	0.35	1.00
135	-	-	-	1.00
140	-	-	-	1.00
150		2 GR	() - I I	1.00
155	-	-	-	0.91
160	-	-	-	0.82
165	-	-	-	0.71
170	-	-	-	0.58
175	-	-	-	0.41

Table 12-5: Correction factors

of spooled/winded cables (DIN VDE 0298-4, 2003-8. Table 27)

Number of layers on spool, reel or drum	1	2	3		5
Correction factor	0.80	0.61	0.49	0.42	0.38

For helix-type coiled/winded cables (spiral in one layer) the correction factor is 0.8.

Extracts from Technical Tables T12 Technical Tables

BLAPP GROUP

LAPP GROUP

Extracts from Technical Tables

Technical Tables T12

T12: Power Rating - Reduction Tables

Number of current-carr of groups of 2- or 3-pha	ying r se A.C	nultic . circi	ore ca uits si	ibles o ngle c	or nun ore ca	nber ables	
	9	10	12	14	16	18	20
Type of installation (method)				actor value			-1
On floors or walls with contact between each other bunched directely as well as in conduits or in wireways.	0.50	0.48	0.45	0.43	0.41	0.39	0.38
In touch between each other, directely attached to walls or floors in one layer.							
111111111	0.70	0.70	0.70	0.70	0.70	0.70	0.70
With clearance of "d" between each other, directely attached to walls or floors in one layer.	0.90	0.90	0.90	0.90	0.90	0.90	0.90
In touch between each other, directely attached to cealings.	0.61	0.61	0.61	0.61	0.61	0.61	0.61
With clearance of "d" between each other, directely attached to cealings in one layer.	0.85	0.85	0.85	0.85	0.85	0.85	0.85

O = Symbol of one single core or one multicore cable.

Notice: Correction factors can be applied only to similar loaded cables of a similar type of installation (wiring methode) and nominal cross sections differ one step only.

T 1	2.	Power	Rating -	Reduction	Tables

Table 12-6: Correction factors

Grouping on the wall, floor, ceiling in conduits or closed wire ways (in accor-Table 21).

dance to DIN VDE 0298-4, 2003-08, Table 21).

Number of current-carr of groups of 2- or 3-pha								
	1	2	3	4	5	6	7	8
Type of installation				n fac				
(method) On floors or walls with contact between each other bunched directely as well as in conduits or in wireways.		0.80						
In touch between each other, directely attached to walls or floors in one layer.	1.00	0.85	0.79	0.75	0.73	0.72	0.72	0.71
With clearance of "d" between each other, directely attached to walls or floors in one layer.	1.00	0.94	0.90	0.90	0.90	0.90	0.90	0.90
In touch between each other, directely attached to cealings.	0.95	0.81	0.72	0.68	0.66	0.64	0.63	0.62
With clearance of "d" between each other, directely attached to cealings in one layer.	0.95	0.85	0.85	0.85	0.85	0.85	0.85	0.85

® LAPP GROUP

minimum distance required according

÷

according Table 12-

p to each other as well as if additional corrected too. I.e

on top to þ 5 cables lying Table have t this not applicable to ion factors of this

In such cases correction Correction factors are

Table is not guaranteed. at this page.

as shown

only, that 1

one-layer

T12 Technical Tables

T12: Power Rating - Reduction Tables

Table 12-7: Correction factors

for grouping/clustering of multi conductor cables in cable trays (in accor-

dance to DIN VDE 0298-4, 2003-08, Table 22).

		Number	Nu	mber	of mu cab		nduct	or
Cable arrangement		of cable trays						
		trays		Cor	rectio	n fact	ors	
nched	in touch	1	0.97	0.84	0.78	0.75	0.71	0.68
nd	S comments	2	0.97	0.83	0.76	0.72	0.68	0.63
y, nc	1000000 - 20000	3	0.97	0.82	0.75	0.71	0.66	0.61
Cable tray, non punched	2 . t × m	6	0.97	0.81	0.73	0.69	0.63	0.58
_	in touch	1	1.00	0.88	0.82	0.79	0.76	0.73
	🛯 ഒരെക്കെ	2	1.00	0.87	0.80	0.77	0.73	0.68
	666669_1******	3	1.00	0.86	0.79	0.76	0.71	0.66
	STT 18 m	6	1.00	0.84	0.77	0.73	0.68	0.64
ited)	with space	1	1.00	1.00	0.98	0.95	0.91	-
ntila	§ 64. kt. 24	2	1.00	0.99	0.96	0.92	0.87	-
ed (ve	8 <u>0.40</u> .***	3	1.00	0.98	0.95	0.91	0.85	-
punch	in touch							
ray,	X X	1	1.00	0.88	0.82	0.78	0.73	0.72
Cable tray, punched (ventilated)	8_8	2	1.00	0.88	0.81	0.76	0.71	0.70
	with space							
	3 8	1	1.00	0.91	0.89	0.88	0.87	
	ei 121;	2	1.00	0.91	0.88	0.87	0.85	
	ai ist Theorem	2	1.00	0.71	0.00	0.07	5.05	
	in touch	1	1.00	0.87	0.82	0.80	0.79	0.78
ype	600000	2	1.00	0.86	0.81	0.78	0.76	0.73
dert		3	1.00	0.85	0.79	0.76	0.73	0.70
, lado	ST	6	1.00	0.83	0.76	0.73	0.69	0.66
Cable tray, ladder type	with space	1	1.00	1.00	1.00	1.00	1.00	-
Sable	<u> </u>	2	1.00	0.99	0.98	0.97	0.96	-
0	ိ <u>ဆုခ်ရာ</u> (and	3	1.00	0.98	0.97	0.96	0.93	-

® LAPP GROUP

Extracts from Technical Tables

Technical Tables T12

T12: Power Rating - Reduction Tables

Table 12-8: Correction factors

for grouping/clustering of single core cables in cable trays. Applicable to current values of Table 12-1 (Origin of T12-8 = DIN VDF 0298-4 2003-08. Table 23).

0		Num- ber of			ing si	-phase circuits ngle core cables
Ua	able arrangement	of 1 2 3 cable trays factor		Applicable as a multiplier of the rated values of:		
	in touch	1	0.98	0.91	0.87	three cables,
per	- 3 ######### 	2	0.96	0.87	0.81	horizontal array, one-layer
ed)	(1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	3	0.95	0.85	0.78	configuration
Cable tray, punched (ventilated)	in touch					
le tr (ver	5 8	1	0.96	0.86	-	three cables, vertical array,
Cab		2	0.95	0.84	-	one-layer
	8_ 8					configuration
pe 'ç	in touch	1	1.00	0.97	0.96	three cables,
Cable tray, ladder type	Š (enoisense)	2	0.98	0.93	0.89	horizontal array,
Cab ladd	}_ #®®≇®≇ _*""	3	0.97	0.90	0.86	one-layer configuration
_	a.a."	1	1.00	0.98	0.96	three cables,
chec	A &	2	0.97	0.93	0.89	horizontal array,
pun		3	0.96	0.92	0.86	delta-configuration
Cable tray, punched (ventilated)	- Sec.					
able	7 G.	1	1.00	0.91	0.89	three cables, vertical array,
0	<u> </u>	2	1.00	0.90	0.86	delta-configuration
ay, pe	न कम्प्योंक	1	1.00	1.00	1.00	
Cable tray, adder type		2	0.97	0.95	0.93	three cables, horizontal array,
Cabl		3	0.96	0.94	0.90	delta-configuration
	an an 1 20 mm					

Note: Correction factors are applicable to similar loaded cables of a similar type of installation (wiring methode) of groups of single core cables, lying in one-layer or delta configuration only, as shown at this page. Conversion factors are not applicable to cables lying on top to each other as well as if minimum distance required according that Table is not guaranteed. In such cases correction factors of this Table have to be additional corrected too. I.e according Table 12-6. In cases where a splitting into certain numbers of parallel groups of cables is needed, each group of 3 current carrying cables is considered as being one entire circuit.

LAPP GROUP

T12 Technical Tables

T12: Power Rating – Reduction Tables

Table 12-9: Power rating of rubber cables

H07RN-F and A07RN-F in industrial application usage (in accordance with

DIN VDE 0298-4, Aug. 2003 Table 13).

Rated temperature at the conductor	60 °C						
Ambient- temperature		30	°C				
Installation- methode Free in air	J.		0.34	A			
Number of current carrying conductors	2	3	2	2			
Conductors nominal cross- section in mm ²			rating in				
1 1.5 2.5 4	- 19 26 34	- 16.5 22 30	15 18.5 25 34	15.5 19.5 26 35			
6 10 16 25	43 60 79 104	38 53 71 94	43 60 79 105	44 62 82 109			
35 50 70 95	129 162 202 240	117 148 185 222	- - -	135 169 211 250			
120 150 185 240	280 321 363 433	260 300 341 407		292 335 378 447			
300 400 500 630	497 586 970 784	468 553 634 742		509 - - -			
Correction factors for Other ambient temperatures Grouping/Clustering	-	see Tabl T 12-8	le T 12-2				
Spooled/ winded cables Multi conductor cables	-	-	-				

B LAPP GROUP

Extracts from Technical Tables Technical Tables T12

T12: Power Rating - Reduction Tables

Table 12-9: Power rating of rubber cables

H07RN-F and A07RN-F in industrial application usage (in accordance with

DIN VDE 0298-4, Aug. 2003 Table 13).

Rated temperature at the conductor		60 °C	
Ambient- temperature		30 °C	
Installation- methode Free in air	A		0.36
Number of current carrying conductors	3	3	3
Conductors nominal	(Current rating i	n
cross- section in mm ²		Α	
1	12.5	13	13.5
1.5	15.5	16	16.5
2.5	21	22	23
4	29	30	30
6	36	37	38
10	51	52	54
16	67	69	71
25	89	92	94
35	110	114	-
50	138	143	-
70	172	178	-
95	204	210	-
120	238	246	
150	273	282	
185	309	319	-
240	365	377	-
300	415	430	
400	-	-	
500	-	-	-
630	-	-	-
Correction factors for	:		
Other ambient temperatures		see Table T 12-2	
Grouping/Clustering	T12-7		
Spooled/			
winded cables	T12-5		
Multi conductor cables	T12-3	-	-

LAPP GROUP

T12 Technical Tables

T12: Power Rating – Reduction Tables

Table 12-10: Power ratings & conditions of arc-welding cables

H01N2-D and H01N2-E (in accordance to DINVDE 0298-4, 2003-08, Table 16)

Rated temperature at the conductor			8	5°C			
Ambient temperature	30 °C						
Applying condition			in	free air			
of the cable			(۲			
			7///	///////	7		
Number of current carrying conductors				1			
Mode of operation	Conti- nuous			Inter	rupt		
Operating periode	-			5 r	nin		
Operating factor OF	100 %	85 %	80 %	60 %	35 %	20 %	8 %
Nom. cross section copper conductor mm ²			Rat	ting in A			
10	96	97	98	102	114	137	198
16	130	132	134	142	166	204	301
25	173	179	181	196	234	293	442
35	216	226	229	250	304	384	584
50	274	287	293	323	398	508	779
70	341	360	368	409	510	655	1011
95	413	438	448	502	632	816	1266
120	480	511	523	588	745	966	1502
150	557	594	609	687	875	1137	1771
185	638	683	700	793	1012	1319	2059
Mode of operation	Conti- nuous			Inter	rrupt		
Operating periode	- 1	91		10	min		
Operating factor OF	100 %	85 %	80 %	60 %	35 %	20 %	8 %
Nom. cross section copper conductor mm ²			Rat	ting in A			
10	96	96	96	97	102	113	152
16	130	131	131	133	144	167	233
25	173	175	176	182	204	244	351
35	216	220	222	233	268	324	477
50	274	281	284	303	356	439	654
70	341	352	358	387	463	578	872
95	413	430	438	478	582	734	1117
120	480	503	513	564	692	880	1348
150	557	586	597	661	819	1046	1609
185	638	674	688	765	955	1226	1892
Other ambient temperatures			Tabl	e T 12-2	2		

B LAPP GROUP

Extracts from Technical Tables

T13: Power Rating according to the National Electrical Code of the USA

Table 13-1: Power ampacity to single core and multi core cables acc. to NEC (USA)

Abstract of NEC Tabelle 310-16

Allowable ampacity (in Ampere) of insulated conductors, rated 0 - 2000 Volts, 60 °C to 90 °C, (140 ° to 194 °F). NOT MORE THAN THREE CONDUCTORS in raceway or cable ore Earth (direct burial), based on ambient temperature of 30 °C (86 °F).

Abstract of NEC Tabelle 310-17

Allowable Ampacity (in Ampere) of SINGLE INSULATED CONDUCTORS, rated 0 – 2000 Volts, in free air, based on ambient temperature of 30 °C.

Con- ductor size		erature R Conduct		Con- ductor size	Temperature R of Conduct			
AWG or kcmil (MCM)	60 °C (140 °F)	75 °C (167 °F)	90 °C (194 °F)	AWG or kcmil (MCM)	60 °C (140 °F)	75 °C (167 °F)	90 °C (194 °F)	
18	-	-	14	18	-	-	18	
16	-	-	18	16	-	-	24	
14	20*	20*	25*	14	25*	30*	35*	
12	25*	25*	30*	12	30*	35*	40*	
10	30	35*	40*	10	40*	50*	55*	
8	40	50	55	8	60	70	80	
6	55	65	75	6	80	95	105	
4	70	85	95	4	105	125	140	
3	85	100	110	3	120	145	165	
2	95	115	130	2	140	170	190	
1	110	130	150	1	165	195	220	
1/0	125	150	170	1/0	195	230	260	
2/0	145	175	195	2/0	225	265	300	
3/0	165	200	225	3/0	260	310	350	
4/0	195	230	260	4/0	300	360	405	
250	215	255	290	250	340	405	455	
300	240	285	320	300	375	445	505	
350	260	310	350	350	420	505	570	
400	280	355	380	400	455	545	615	
500	320	380	430	500	515	620	700	
600	355	420	475	600	575	690	780	

* Note: Unless otherwise specifically permitted elsewhere in the NEC, the overcurrent protection for conductor types market with an * shall not exceed 15 amperes for AWG 14, 20 amperes for AWG 12 and 30 amperes for AWG 10, after any correction factors for ambient temperature and numbers of conductros have been applied.

B LAPP GROUP

T13 Technical Tables

T13: Power Rating according to the National Electrical Code of the USA

Table 13-1: Power ampacity to single core and multi core cables acc. to NEC (USA)

for ambien	tion fac t tempo than 30	erature	Correction fac than thre carrying co a raceway	e current- nductors in	
Ambient temperature in °C	60°C	75°C	90°C	Number of current-carrying conductors	Correction factor
21 - 25	1.08	1.05	1.04	4 up to 6	0.80
26 - 30	1.00	1.00	1.00	7 up to 9	0.70
31 - 35	0.91	0.94	0.96	10 up to 20	0.50
36 - 40	0.82	0.88	0.91	21 up to 30	0.45
41 - 45	0.71	0.82	0.87	31 up to 40	0.40
46 - 50	0.58	0.75	0.82	41 and more	0.35
51 - 55	0.41	0.67	0.76		
56 - 60	-	0.58	0.71		
61 - 70	-	0.33	0.58		
71 - 80	- 1	-	0.41		

Note: Power ampacity of cables & wires in industrial machinery, see chapter 12 of the NFPA 79 Edition 2007.

. LAPP GROUP

B LAPP GROUP

Extracts from Technical Tables

Technical Tables T15

T15: Properties of insulating and sheathing materials

Only for the basic materials. Variations are possible depending on application/

design. See the relevant Catalogue

Material		Para	neter	
	Abbreviation	VDE symbol	working temperature	dielectric constant (10 ⁻³)
Bio-oil resistant material	Lapp type: P4/11	-	-40 +120	2.4
Polyvinylchloride	PVC	Y	-30 +70	4.0
Polyvinylchloride heat resistant	PVC	Y	-20 +90	3.5
High pressure Polyethylene	LDPE	2Y	-50 +70	2.3
Low Pressure Polyethylene	HDPE	2Y	-50 +100	2.3
Polyurethane	PUR	11Y	-40 +90/100	4.0 - 6.0
Polyamide	PA	4Y	-40 +80	3.5 - 7.0
Polybutylene terephtalate	PBTP	-	-60 +110	3.0 - 4.0
Polytetrafluorethylene	PTFE	5Y	-190 +260	2.1
Tetrafluorethylene Hexafluorpropylene Copolymere	FEP	6Y	-100 +200	2.1
Ethylene- tetrafluorethylene	ETFE	7Y	-100 +150	2.6
Perfluoralkoxy-polymer	PFA	-	-190 +260	2.1
Chloropren rubber	CR	5G	-40 +100	6.0 - 8.0
Silicone rubber	SI	2G	-60 +180	2.8 - 3.2
Ethylene vinyl acetate	EVA	4G	-30 +125	5 - 7
Ethylene propylen rubber	EPM/ EPDM	3G	-30 +120	3.2
Thermoplastic polyolefin elastomer	TPE-O	-	-40 +120	2.7 - 3.6
Thermoplastic polyester elastomer	TPE-E	12Y	-70 +125	3.7 - 5.1
Styrene triple block copolymer	TPE-S	-	-75 +105/140	2.2 - 2.6

160

T15: Properties of insulating and sheathing materials

Technical Tables T15

T15: Properties of insulating and sheathing materials

Material		F	Parameter		
	Abbreviation	volume resistivity (Ω x cm)	tensile strength N/mm² MPa	Elongation %	Water absorption (20 °C) %
Bio-oil resistant material	Lapptype: P4/11 PVC	10 ¹⁵ 10 ¹² - 10 ¹⁵	10 - 20	450 - 550	1 - 2
Polyvinylchloride Polyvinylchloride			10 - 25	150 - 300	0.4
heat resistant	PVC	1012 - 1015	10 - 25	150 - 300	0.4
High pressure Polyethylene	LDPE	1017	20 - 30	500	0.1
Low Pressure Polyethylene	HDPE	10 ¹⁷	30	800	0.1
Polyurethane	PUR	1012	30 - 45	300 - 600	1.5
Polyamide	PA	1014	50 - 180	200 - 300	1 - 2
Polybutylene terephtalate	PBTP	1016	50 - 100	50 - 300	0.5
Polytetrafluorethylene	PTFE	1018	14 - 40	240 - 400	0.01
Tetrafluorethylene Hexafluorpropylene Copolymere	FEP	10 ¹⁸	20 - 25	250 - 350	0.01
Ethylene- tetrafluorethylene	ETFE	1016	40 - 50	100 - 300	0.01
Perfluoralkoxy-polymer	PFA	1015	30	300	0.01
Chloropren rubber	CR	10 ¹³	25	450	1
Silicone rubber	SI	10 ¹⁵	5 - 10	200 - 350	1.0
Ethylene vinyl acetate	EVA	10 ¹³	5	200	0.01
Ethylene propylen rubber	EPM/ EPDM	1014	5 - 25	200 - 450	0.02
Thermoplastic polyolefin elastomer	TPE-O	5 x 1014	≥ 6	≥ 400	1.5
Thermoplastic polyester elastomer	TPE-E	1012	3 - 25	280 - 650	0.3 - 0.6
Styrene triple block copolymer	TPE-S	1016	9 - 25	500 - 700	1 - 2

Material		1		
	Weather resistance	Fuel resistance	Oil resistance	Flammability
		1	Bio-oil	
Bio-oil resistant material	very good	good	resistant very good	flammable
Polyvinylchloride	moderate	moderate	good	self- extinguishing
Polyvinylchloride heat resistant	moderate	moderate	good	self- extinguishing
High pressure Polyethylene	good	poor	moderate	flammable
Low Pressure Polyethylene	moderate	poor	moderate	flammable
Polyurethane	very good	good	good	self- extinguishing*
Polyamide	good	moderate	good	flammable
Polybutylene terephtalate	good	good	good	flammable
Polytetrafluorethylene	very good	very good	very good	non- flammable
Tetrafluorethylene Hexafluorpropylene Copolymere	very good	very good	very good	non- flammable
Ethylene- tetrafluorethylene	very good	very good	very good	non- flammable
Perfluoralkoxy-polymer	very good	very good	good	non- flammable
Chloropren rubber	very good	poor	good	self- extinguishing
Silicone rubber	very good	poor	moderate	less flammable
Ethylene vinyl acetate	good	poor	poor	flammable
Ethylene propylen rubber	good	poor	poor	flammable
Thermoplastic polyolefin elastomer	very good	moderate	moderate	flammable
Thermoplastic polyester elastomer	very good	good	very good	flammable
Styrene triple block copolymer	moderate	good	poor	flammable

* only with additional flame retardener

® LAPP GROUP

Material

T16 Technical Tables

T16: Anglo-american Dimensions

US dimensions for cables comparison with metric dimensions

In North America the cross section of cables are mostly stated in AWG sizes (American Wire Gauge) or for bigger cross sections (higher than AWG 4/0) in the dimension 'kcmil'. The respective standards for rating the cable according the ampacity also refer to these dimensions.

Hence multi standard cables have to fulfil the requirements of the metric system, stating the cross section in mm² as well as the requirements of the AWG system, in the following these systems are compared on the basis of their nominal sizes.

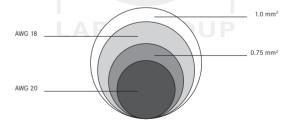
162

Please consider that there are no definite equivalents, because the requirements of both systems regarding cross section and conductor resistance differ to each other. The following Table should help to find the right nominal cross section. The respective standards for the project planning, e.g. UL1581 or IEC 60228 (VDE 0295) have to be applied accordingly.

® LAPP GROUP

For choosing the appropriate matching parts, e.g. conductor end sleeves, always the effective size or cross section has to be regarded. This dimension is stated on the respective Catalogue page of the product itself.

		column			olumn	
1a	1b	2	3	4	5a	5b
No ame	uired rth- rican nsion	Geo- metrical convers- ion	Metrical nominal cross section, which fulfils the electrical requirements	Required metrical cross section	dime which the ele	merican nsion, fulfils ectrical ements
AWG	kcmil	mm ²	mm²	mm ²	AWG	kcmil
	750	380.03	400	400		800
	500	253.35	300	300		750
	450	228.02	240	240		500
	400	202.68	r Gi	KUU		450
	350	177.35	185	185		400
	300	152.01				350
	250	126.68	150	150		300
4/0		107.22	120	120		250
3/0		85.01	95	95	4/0	
2/0		67.43	70	70	3/0	
1/0		53.49			2/0	
1		42.41	50	50	1/0	
2		33.62	35	35	1	
3		26.67			2	
4		21.15	25	25	3	
5		16.77			4	
6		13.30	16	16	5	
7		10.55			6	


® LAPP GROUP

Extracts from Technical Tables

T16: Anglo-american Dimensions

		column		(olumn	
1a	1b	2	3	4	5a	5b
No ame	uired rth- rican nsion	Geo- metrical convers- ion	Metrical nominal cross section, which fulfils the electrical requirements	Required metrical cross section	dime which the ele	merican nsion, fulfils ectrical ements
AWG	kcmil		mm ²	mm ²	AWG	kcmil
8		8.37	10	10	7	
9		6.63			8	
10		5.26	6	6	9	
11		4.17			10	
12		3.31	4	4	11	
13		2.62			12	
14		2.08	2.5	2.5	13	
15		1.65			14	
16		1.31	1.5	1.5	15	
17		1.04			16	
18		0.82	1	1	17	
19		0.65	0.75	0.75	18	
20		0.52			19	
21		0.41	0.5	0.5	20	
22		0.33	0.34	0.34	21	
23		0.26			22	
24		0.20	0.25	0.25	23	
25		0.16			24	
26		0.13	0.14	0.14	25	

Schematic diagram of the cross section dimensions

T17 Technical Tables

T17: Calculation of metal surcharges

Table 17-1: Example 'Copper'

The copper price

In Germany and some other countries. copper cables, -leads and piece-goods containing copper may sold at daily copper prices (DEL). The DEL is the Stock Exchange Quotation for German electrolytic copper conducting purpose, i.e. 99.5% pure copper. The DEL is expressed in Euro per 100 kg. It appears in the commercial section of the daily papers under the heading "Commodity Markets".

Example: DEL 247.75 means: 100 kg copper (Cu) cost 247.75 Euro. Currently a 1 % procurement surcharge is added to the daily quotation for cables, leads and piece-goods.

The copper price basis

In the list price of many cables, almost all leads and piece-goods, a proportion of the copper price is already included.

Example for how to calculate the copper price supplement for cables:

Flexible cable ÖLFLEX® CLASSIC 100, 3G1.5 mm², Copper index per Catalogue; 43 kg/km. Therefore the calucated copper weight is 43 kg per 1 km.

(kg/km) 1000	Copper index	x	(DEL +1 % procurement surcharge) – copper price basis	=	copper supplement cost in
	(kg/km)			L L	Euro/100 m

ÖLFLEX® CLASSIC 110, 3G1.5 mm²,

DEL: 247.75 Euro/100 kg. Cu base 150.- Euro/100 kg. Cu index: 43 kg/km

43 kg/km	× -	(247.75+2.48) - 150.00	_	4.31 Euro/
43 Kg/ KIII	^ -	1000	_	100 m

In the case of a DEL-quotation of 247.75 Euro/100 kg, this is the additional copper price supplement for 100 m ÖLFLEX® CLASSIC 110 3G1.5 mm².

Other Metals

This proceeding is applied for other metals sameway, e.g. "Aluminium". The term "Copper" is then to be replaced by "Aluminium". General: "Metal".

It is also expressed in Euro per kg.

® LAPP GROUP

- Euro 150.-/100 kg for almost every flexible cable and leads (e.g. ÖLFLEX® CLASSIC 100) and piecegoods (e.g. ÖLFLEX® SPIRAL 540 P)
- Euro 100,-/100 kg for telephone cables and -cords (e.g. I -Y(St)Y)
- Euro 0.00/100 kg for cables (e.g. NYY, NYCY, NYCWY), an exclusive copper cost pricing.

Copper basis is indicated at each relevant page of this Catalogue, below the article Table.

(without tax) is calculated as follows:

net price

the invoice. Your

at 1 separately discount (%)

is accounted

Copper price supplement is accounte Catalogue/(gross-) price minus your

Price including copper:

+ copper supplement.

The copper index

The copper index (copper number) is the calculated copper weight (kg) of a cable per lengts (km) of a cable or lead, for piece-goods per (1000) piece(s) and is indicated for each Catalogue article.

Extracts from Technical Tables Technical Tables T18

T18: Approvals and trademarks

Because of their outstanding characteristics, many of our products have been tested and authorized by the following approval organisations. Please find the certification marks on the individual product pages - if appliable.

	Q
	_

UNDERWRITERS LABORATORIES INC. LISTED COMPONENT MARK FOR CANADA AND UNITED STATES INSTITUTO ITALIANO DEL MARCHIO DI UALITÁ

CANADIAN STANDARDS

ASSOCIATION

PHYSIKALISCH-TECHNISCHE BUNDESANSTALT

einsetres

LLOYD'S REGISTER

OF SHIPPING

VERBAND DEUTSCHER

FLEKTROTECHNIKER

im Musterregister beim Amtsgericht Stuttgart

ZERTIFIKAT GERMANISCHER LLOYD

SCHWEIZERISCHER **FLEKTROTECHNISCHER** VFRFIN EN 220500 ff.

GGVS Gefahr-Gut-

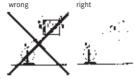
Verordnung-Straße

"Gost R" Certification for Russia

165

Extracts from Technical Tables T19 Technical Tables

T19: Cable laying guidelines for cables and leads


LAPP GROUP

Extracts from Technical Tables

Technical Tables T19

T19: Cable laying guidelines for cables and leads

Unreeling and dereeling of cables

Cables must be selected according to the laying and operating conditions involved. They must be protected against mechanical, thermal, or chemical effects, and against penetration of moisture from the cable ends.

Insulated power cables must not be laid underground. Temporary covering of tough rubber sheathed cable NSS-HÖU or cable runs with earth, sand or similar, for example on construction sites, is not deemed to constitute underground laying.

Cables ties or supports must not cause any damage to fixed wiring and cables. If cables or wires running horizontally along walls or ceilings are fastened with clips the following reference figures apply for the clip spacing:

For non-reinforced cables and wiring, 20 x cable diameter.

These spacings also apply for mounting positions where installation is on cable trays and staging. For vertical installation the clip spacings can be widened, depending on the type of cable or clip involved.

Flexible cables (e.g. ÖLFLEX® cables, UNITRONIC® cables) must be installed with stack when connected to mobile equipment and must be protected against twisting and buckling. The outer sheathing of cables must not be damaged at the feed points, or by the strain relief devices. Flexible PVC cables in the standard versions are not designed for open air use.

Flexible rubber-sheathed cables (e.g. OLFLEX* CRANE cables) are only suitable for permanent use in the open air if the outer sheathing is based generally on a compound of polychloroprene (NEOPRENE*). Special cables must be used for permanent underwater use.

Thermal stresses

The temperature limits for the respective types of cables are listed in the relevant Technical Data. The upper temperature limits must not be exceeded as a result of heat built-up in the cables or the ambient thermal conditions. The lower limits denote the lowest permissible ambient temperature.

Tensile stresses

The tensile stress imposed on the conductor should be as low as possible. The following tensile stresses for the conductor must not be exceeded in the case of cables:

 Flexible cables 15 N/mm² during installation of cables, subjected for flexible use only. Screening, concentric conductors and divided protective conductors not being included in the above figures. In the case of cables subjected to dynamic stresses in operation, e.g. in crane installations involving high rates of acceleration of power chain systems subject to frequent movement, suitable measures must be taken, e.g. increased bending radi in the individual case. Due account must be taken of the possibility of service life being reduced.

- Cables for static usage. When laying permanent cables 50 N per mm² of conductor cross-section.
- Fibre optical, BUS, LAN and Industrial Ethernet cables Please take into consideration its individual tensile strengths limitations. These values are given at products datasheet, or on demand.

Neoprene[®] is a registered trademark of DuPont de Nemour

LAPP GROUP

Extracts from Technical Tables T22 Technical Tables

LAPP GROUP

B LAPP GROUP

Extracts from Technical Tables

Technical Tables T22

T22: Protection classes to EN 60529

Protection Classes for water protection

Second figure	Designation	Scope of protection – explanation
0	No protection	
1	Protection against dripping water falling vertically	Water drops which fall vertically must not have any harmful effect.
2	Protection against dripping water falling at an angle	Water drops which fall at any angle from 15° to the vertical, may not have any harmful effect.
3	Protection against sprayed water	Water which falls at any angle up to 60° to the vertical, must not have any harmful effect
4	Protection against splashed water	Water which splashes from all directions onto the equipment must not have any harmful effect.
5	Protection against water jet	A water jet from a nozzle, which is directed from any direction against the equipment, must not have any harmful effect.
6	Protection against flooding	In the event of temporary flooding, e.g. in heavy seas, water may not penetrate into the equipment in harmful quantities.
7	Protection against immersion	Water may not penetrate in harmful quantities when the equipment is immersed in water under the pre- scribed pressure and time conditions.
8	Protection against submersion	Water may not penetrate in harmful quantities if the equipment is submerged under water.
9K	Protection against high pressure/cleaning with high pressure cleaner	Water under high pressure and from any direction may not cause damage to the housing.

T22: Protection classes to EN 60529

Definition of the protection category acc. to EN 60529 (DIN 0470) and DIN 40050

The protection category is mentioned as a short mark which consists of two unvarying letters IP and ratios for the protection level, for example IP 54.

Protection Classes for protection against foreign bodies

First figure	Designation	Scope of protection – explanation
0	No protection	
1	Protection against large foreign bodies ≥ 50 mm Ø	Protection against accidental, large- surface contact with active or internal moving parts, e.g. with the hand, but no protection against deliberate access to these parts. Protection against pene- tration of solid foreign bodies with a diameter larger than 50 mm.
2	Protection against medium-sized foreign bodies > 12.5 mm Ø	Protection against contact by the fingers with active or internal moving parts. Protection against penetration of solid foreign bodies with a diameter larger than 12 mm.
3	Protection against small foreign bodies > 2.5 mm Ø	Protection against contact with active or internal moving parts with tools, wires, etc. of a thickness greater than 2.5 mm. Protection against penetration of solid foreign bodies with a diameter larger than 2.5 mm.
4	Protection against granula foreign bodies > 1.0 mm Ø	Protection against contact with active or internal moving parts with tools, wires, etc. of a thickness greater than 1 mm.
5	Protection against accumulation of dust	Complete protection against contact with live or internal moving parts, protection against harmful dust accumulations. The penetration of dust is not completely prevented, but the dust may not penetrate in such quantities that the mode of operation is restricted.
6	Protection against ingress of dust	Complete protection against contact with live or internal moving parts. Protection against the ingress of dust.

B LAPP GROUP

T24 Technical Tables

T24: Chemical resistance of plastic materials

	C	able ar	nd lead	designa	ation	
The information is given to the best of our knowledge and experience, but must be regarded as being for the guidance only. A defi- nite judgement depends in most cases on tests under actual working conditions.		at temp +°C	Polyamide PA 6	Polyamide PA 6.6	Polyamide PA 12	Thermoplastic Polyurethane PU
Reagens	concen- tration					
Exhaust gases, containing carbon dioxide	any	60 60				
Waste gas, containing SO ₂	low 40%	20				
Acetaldehyde Acetone	40%	20				
Acrylic acid	100%	> 30				
Alums, hydrous	dilute	40				
Allyl alcohol	96%	20				
Aluminum chloride, hydrous	dilute	40	-			_
Aluminum sulphate, h.	dilute	40				
Formic acid, hydrous	10%	20		7 🗖 🗌		
Ammonia solution, h.	saturated	20	20%	20%	20%	
Ammonium chloride, h.	saturated	60				3%
Ammonium nitrate, h.	dilute	40				
Ammonium sulphate, h.	dilute	40				
Aniline, pure	100%	20				
Anilin hydrochloride, h.	saturated					
Benzaldehyde, hydrous	saturated	20	pure ⊿	pure ⊿	pure ⊿	
Benzine	100%	20				
Benzoic acid, hydrous	any	40	20 % 🚄	20% 🚄		
Benzole	100%	20				
Bleaching liquor	12.5 CI	20				3% 🗆
Drilling oil	any	20				
Chrome alum, hydrous	dilute	40				
Cyclohexanol	-	20				
Diesel fuel		85				20 °C
Potassium chloride, hydrous	10%	20	•			
Acetic acid Ethanoic acid	100%	20			_	201
Ethanoic acid Ehtyl alcohol, hydrous	10%	20		_	40 Vol%	3% ⊿
	10.0%					
Ethyl dichloride Ethylenoxid	100% 100%	20 20				
		20				
Ehtyl ether	100%	60				
Ferric cyanide, hydrous	saturated	00				

BLAPP GROUP

Extracts from Technical Tables

Technical Tables T24

T24: Chemical resistance of plastic materials

			cal resist			
	0	able ar	d lead	designa	ation	
The information is given to the best of our knowledge and experience, but must be regarded as being for the guidance only. A defi- nite judgement depends in most cases on tests under actual working conditions.		at temp +°C	Polyamide PA 6	Polyamide PA 6.6	Polyamide PA 12	Thermoplastic Polyurethane PU
Reagens	concen-					
	tration					
Fluorine	50%	40	pure 🗌	pure 🗌		
Formaldehyde, hydrous	dilute	40	pure 📕	pure 🔳	pure ⊿	
Glucose, hydrous	any	50				
Urea, hydrous	to 10%	40	20% 🔳	20 % 🔳	20 % 🔳	
Hydraulic fluid hardly inflammable	80%	80	-	-		
Hydraulic oil H and HL (DIN 51524)	100%	100				
Hydroxylamine sulphate, hydrous	to 12%	30				
Caustic soda lye, hydrous	50%	20				
Potassium bromide, hydrous	any	20	10 % 🔳	10 % 🔳	10 % 🔳	
Potassium chloride, hydrous	10%	20		-		
Potassium dichromate, hydrous	40%	20	5% 🚄	5% 🚄	5 % 🚄	
Potassium nitrate, hydrous	any	20	10 % 🔳	10 % 🔳	10 % 🔳	
Kaliumpermanganat, hydrous	saturated	20				
Hydrosilicofluoric acid, h.	to 30%	20				
Carbon dioxide, dry	100%	60				
Carbon dioxide	100%	60				
Cresol, hydrous	to 90%	20	pure 🗖	pure 🗖		
Cooling liquids DIN 53521		120				
Copper monochloride, h.	saturated	20				
Copper sulphate, hydrous	saturated	60				
Magnesium carbonate, h.	saturated	100				
Magnesium chloride, h.	saturated	20	10 % 🔳	10 % 🔳	10 % 🔳	
Methyl alcohol	100%	20				
Methylene chloride	100%	20				
Lactic acid, hydrous	to 90%	20	10 % 🔳	10 % 🔳	10 % 🔳	3 % 🖊
Mineral oil						
Sodium chlorate, hydrous	saturated	20	10 % 🚄	10 % ⊿	10 % 🚄	
Caustic soda, hydrous	10%	20				3 % 🖊
Nickel chloride, hydrous	saturated	20		10 % 🚄	10 % 🚄	
Nickel sulphate, hydrous	saturated	20	10 % ⊿	10 % 🚄	10 % 🚄	

h. = hydrous

B LAPP GROUP

T24 Technical Tables

172

T24: Chemical resistance of plastic materials

	C	able ar	d lead	designa	ation	
The information is given to the best of our knowledge and experience, but must be regarded as being for the guidance only. A defi- nite judgement depends in most cases on tests under actual working conditions.		at temp +°C	Polyamide PA 6	Polyamide PA 6.6	Polyamide PA 12	Thermoplastic Polyurethane PU
Reagens	concen- tration					
Nitro glycerin	dilute	20				
Oil and grease		20				
Oleic acid	-	20				
Oxalic acid	any	20	10 % ⊿	10 % ⊿	10 % ⊿	3 % ⊿
Ozone	pure					
Kerosine	100%	80				
Phosgene, gaseous	100%	20				
Phosphoric acid, hydrous	dilute	20	10 % 🗖	10 % 🗔	10 % 🗖	3 % ⊿
Phosphorus pentoxide	100%	20				
Mercury	pure	20				
Nitric acid, hydrous	50%	20				3 % 🗌
Hydrochlorid acid, hydrous	30%	20	20 % 🗖	20 % 🗖	20 % 🗖	3 % 🗆
Lubricating grease, base diester oil		110				
Lubricating grease, base polyphenyl ester		110	-			
Lubricating grease, base silicon oil		110	•			
Carbon bisulphide	100%	20				
Sulphuric sodium, liquid	dilute	40				
Sulphuric acid, hydrous	10%	20				3 % 🗆
Sea water		40				20 °C
Soap solution, hydrous	any	20	dilute 🔳	dilute 🔳	dilute 🔳	
Carbon tetrachloride	100%	20				
Toluene	100%	20				
Trichloroethylene	100%	20				
Vinyl acetate	100%	20				
Hydrogen	100%	60	20 °C	20 °C	20 °C	
Xylene	100%	20				
Zinc chloride, hydrous	dilute	60	10 % ⊿	10 % ⊿		
Zinc sulfate, hydrous	dilute	60				
Zinc chloride, hydrous	dilute	40				
Citric acid	to 10%	40	20 °C	20 °C	20 °C	3 % 🗖

B LAPP GROUP

Extracts from Technical Tables

Technical Tables T24

T24: Chemical resistance of plastic materials

		able en	diand	destant		
	C	able an	dlead	designa	ation	
The information is given to the best of our knowledge and experience, but must be regarded as being for the guidance only. A defi- nite judgement depends in most cases on tests under actual working conditions.		Polypropylene PP	Polyethylene HD-PE	Polyethylene LD-PE	Polystyrole PS	Nitrile Butadiene rubber NBR
Reagens	concen- tration					
Exhaust gases, containing carbon dioxide	any					
Waste gas, containing SO ₂	low					
Acetaldehyde	40%					20 °C
Acetone	100%					
Acrylic acid	100%					
Alums, hydrous	dilute					20 °C
Allyl alcohol	96%			20 % 🔳		
Aluminum chloride, hydrous	dilute					20 °C
Aluminum sulphate, hydrous	dilute					20 °C
Formic acid, hydrous	10%					
Ammonia solution, hydrous	saturated				25 % 🔳	
Ammonium chloride, hydrous	saturated					20 °C
Ammonium nitrate, hydrous	dilute					20 °C
Ammonium sulphate, hydrous	dilute				5	
Aniline, pure	100%					
Anilin hydrochloride, h.	saturated					
Benzaldehyde, hydrous	saturated					
Benzine	100%					
Benzoic acid, hydrous	any					
Benzole	100%					
Bleaching liquor	12.5 CI			_	_	
Drilling oil Chrome alum, hydrous	any dilute					20 °C
	unuto				_	
Cyclohexanol	-	00.00	00.00	00.00		
Diesel fuel		20 °C	20 °C	20 °C		
Potassium chloride, h.	10%					
Acetic acid	100%					

h. = hydrous

Extracts from Technical Tables T24 Technical Tables

® LAPP GROUP

® LAPP GROUP

Extracts from Technical Tables

Technical Tables T24

T24: Chemical resistance of plastic materials

	C	able ar	nd lead	designa	ation	
The information is given to the best of our knowledge and experience, but must be regarded as being for the guidance only. A defi- nite judgement depends in most cases on tests under actual working conditions.		Polypropylene PP	Polyethylene HD-PE	Polyethylene LD-PE	Polystyrole PS	Nitrile Butadiene rubber NBR
Reagens	concen- tration					
Ethanoic acid Ehtyl alcohol, hydrous Ethyl dichloride Ethylenoxid	10% 10% 100% 100% 100%					
Ehtyl ether Ferric cyanide, hydrous Fluorine	saturated 50%					
Formaldehyde, hydrous	dilute	40 % 🔳	40 % 🔳	40%	30% 🔳	20 °C
Glucose, hydrous Urea, hydrous Hydraulic fluid hardly inflammable	any to 10% 80%				-	
Hydraulic oil H and HL (DIN 51524)	100%					
Hydroxylamine sulphate, hydrous	to 12%			_		
Caustic soda lye, hydrous Potassium bromide, hydrous	50% any					
Potassium chloride, hydrous	10%	R		•		•
Potassium dichromate, hydrous Potassium pitrato, hydrous	40%					
Potassium nitrate, hydrous Kaliumpermanganat, hydrous	any saturated					
Hydrosilicofluoric acid, hydrous	to 30%					
Carbon dioxide, dry	100%				50 °C	20 °C
Carbon dioxide	100%					20 °C
Cresol, hydrous Cooling liquids DIN 53521	to 90%					
Copper monochloride, h.	saturated					20 °C
Copper sulphate, hydrous	saturated					

	C	able an	dlead	designa	ation	
The information is given to the best of our knowledge and experience, but must be regarded as being for the guidance only. A defi- nite judgement depends in most cases on tests under actual working conditions.		Polypropylene PP	Polyethylene HD-PE	Polyethylene LD-PE	Polystyrole PS	Nitrile Butadiene rubber NBR
Reagens	concen- tration					
Magnesium carbonate, hydrous	saturated				50 °C	
Magnesium chloride, hydrous	saturated					
Methyl alcohol	100%	40 °C				
Methylene chloride	100%					
Lactic acid, hydrous	to 90%				80 % 🔳	
Mineral oil		20 °C	20 °C	20 °C		
Sodium chlorate, hydrous	saturated					
Caustic soda, hydrous	10%					
Nickel chloride, hydrous	saturated					
Nickel sulphate, hydrous	saturated					_
Nitro glycerin	dilute					
Oil and grease Oleic acid						
Oxalic acid	any					
Ozone	pure					
Kerosine	100%	20 °C	20 °C	20 °C		
Phosgene, gaseous	100%					
Phosphoric acid, hydrous	dilute				86 % 🔳	
Phosphorus pentoxide	100%					
Mercury	pure					
Nitric acid, hydrous	50%				30 % 🔳	
Hydrochlorid acid, hydrous Lubricating grease, base diester oil	30%				15 % 🔳	
Lubricating grease, base polyphenyl ester						
Lubricating grease, base silicon oil						
Carbon bisulphide	100%					
Sulphuric sodium, liquid	dilute					
Sulphuric acid, hydrous Sea water	10%	50%	50%	50%		20 °C

LAPP GROUP

T24 Technical Tables

T24: Chemical resistance of plastic materials

		C	able an	d lead	designa	ation	
The informatio the best of our and experience be regarded as the guidance o nite judgement most cases on actual working	knowledge e, but must s being for only. A defi- t depends in tests under		Polypropylene PP	Polyethylene HD-PE	Polyethylene LD-PE	Polystyrole PS	Nitrile Butadiene rubber NBR
Reagens		concen- tration					
Scap solution, Carbon tetrach Toluene Trichloroethyle Vinyl acetate Hydrogen Xylene Zinc chloride, H Zinc sulfate, hy Zinc sulfate, hy	nloride ne hydrous /drous	any 100% 100% 100% 100% 100% dilute dilute dilute				50 °C	20 °C 20 °C 20 °C 20 °C 20 °C
Citric acid		to 10%					20 °C

= not consistent

provisory consistent

= consistent

Absorption Cause for attenuation of a fibre optic cable.

Abbreviation for Attenuation to Crosstalk Ratio. The ACR value indicates the relationship between the near-end crosstalk and the attenuation at a certain frequency.

Address bus System of associated cables, to which address bits can be transferred.

Adhesion Adhesive, cohesive and density property of the outer sheath of a cable. "Low adhesion" property important e. g. for drag chain use in order to avoid the cables from sticking to each other.

Aging The change in the properties (predominantly tensile strength and expansion) of a material over time under specific conditions such as temperature, UV radiation, ozone influence, chemical and thermal loads, etc.

Α	Glossary
---	----------

<u> </u>			, , , , , , , , , , , , , , , , ,
Aging resistance	As cables are often subject to environmental influences over decades (life cycle), i. e. chemical, electrical and climatic exposure, it is these properties	Ampacity	Maximum permitted current that can be transmitted under defined conditions. VDE0298, Part 4.
	that are to be tested. Here, all the materials found in cables are briefly tested under extreme conditions. All materials should have a very high aging resis-	Ampere	The strength of an electric current that flows through a conductor. Unit of measurement for the electric current (A).
	tance.	Analog signal	Transmission of continuously
Alternating current	The alternating current is produced by linking three	transmission	variable signals with which the light output is modulated.
	alternating currents with identical oscillation values and frequencies. Also known as multi-phase alternating current.	Angle of beam spread	Half the vertical angle of the cone within which the injected power in a light waveguide with uniform illumination is equal to a specified fraction of the total
Aluminium sheath	The aluminium sheath is lighter than the lead sheath,		injected power.
	has better conductivity and greater resistance, however must include a plastic sheath to protect against corrosion.	ANSI	Abbreviation for the American National Standards Institute. An American committee which, similar to the German DIN, deve- lops and publishes standards.
American wire gauge	Cables or cores according to American cross-sections/ dimensions. High AWG number → small cross-section, low AWG number → large cross- section (see Table T16).	Antenna cable	Antenna cables are coaxial high-frequency cables for recei- ver connections, domestic distri- bution grids and single antenna installations. They are mainly

	used in receiving and distributi- on stations for sound and tele- vision broadcasting. They must guarantee a low-reflection signal transmission.		It can be made of steel wire braiding, circular or flat steel wires, strip iron or combinations of these materials.
Anti-kink cable glands	Mechanism that is part of a cable gland and provides addi- tional protection if a flexible cable is frequently subjected to bending (e. g. SKINDICHT [®] SR-SV-M at Lapp).	Armouring types	Commonly used are the flat steel wire, steel band, profile steel wire and round steel wire armouring with outer protective cover. There are also steel wire armourings with an anti-twist tape (steel band), however with- out an outer protective cover
Antioxidant, Oxidation inhibitor	As antioxidants may colour rubber compounds, they are generally only ever used for dark compounds. They prevent the	Armouring, armour	(for interior spaces). A special electromechanical or mechanical protection against
Approved cables	compounds from becoming brittle too early. Approved control and data net- work cables with certification, standards such as VDE, UL/		external stresses, for the im- provement of the reduction factor and for the absorption of tensile forces. Plastic fibres are used instead of metallic armouring for fibre optic cables.
Armouring	CSA. Also known as reinforcement.	AS	Abbreviation for Australian Stan-
Armouring	Also known as reinforcement. Armouring is a mechanical protection for cables. It is	ASI	dard Bus system for the lowest
	produced in a variety of ways and using a wide range of materials, depending on the expected loads on the cable.	(Actor-Sensor-Interface)	level of automation. Facilitates the simple connection of sensors, actuators and inte- grated systems to the first

	control level. See \rightarrow Master- Slave principle. Up to 248 binary inputs and outputs per grid, one cable for infor- mation and energy, reverse- polarity protected connection technology, 100 m cable length or up to 300 m with repeaters, open tree structure of grid, protection class up to IP 67, cycle time <5 ms, high immunity to interference and fault tole- rance.	A
ASME	Abbreviation for the American Society of Mechanical Engineers (USA).	A
Assembly	A ready-to-install cable. It is cut to the appropriate length and fitted with connecting ele- ments (plugs, cable lugs, etc.) at the ends.	A
ASTM	Abbreviation for the American Society of Testing and Materials.	
ATEX approval	This approval is required for the intended use of devices and protection systems in areas at risk to explosions.	А

	Glossary
Attenuation	Attenuation is the reduction of the signal amplitude during transmission to a medium. It increases with the rising fre- quency and cable length. The signal level is impaired in the process.
Attenuation a	The reduction of the optical signal power between two cross- sectional surfaces of a fibre optic cable due to losses. The unit of measurement is decibels (dB).
Attenuation coefficient a	The attenuation relative to the length of a fibre optic cable. The standard unit of measure- ment is decibel/kilometre (dB/ km).
Automotive cable	Vehicle cables are cores and cables used in passenger cars and trucks (e.g. ÖLFLEX® TRUCK at Lapp).
AWG	Abbreviation for American Wire Gauge. Standard expres- sion for the wire diameter. The smaller the AWG value, the bigger the wire diameter. The

actual values (mm) depend on

	the core resolution, regardless of whether a fixed conductor or a strand is used.		elements to be processed into a strand without torsion.
AWM	UL marking for Appliance Wiring Material.	BALUN	Balun is a term combining "balanced" and "unbalanced". Baluns are used for adjusting impedance and symmetry in the
Backbone	Backbone or secondary wiring is the connection between the		various transmission media in copper grids.
	building distributor and the in- dividual floor distributors in a structured wiring system.	Banding	Wrapping a bundle of wires with relatively narrow paper, textile, plastic or metal strips.
Backscatter	A small fraction of the light that is deflected from its course due to dispersion travels in a reverse direction, i. e. in the light waveguide back to the transmitter. By observing the chronological progression of the backscattered light using a beam splitter on the transmitter,	Bandwidth	Frequency range of a fibre optic cable within which data can be transmitted within a particular time frame. The greater the bandwidth, the more data that can be transmitted. The trans- mission speed depends on the bandwidth of the entire network.
	it is possible to measure not only the length and damping of an installed light waveguide from one end but also local irre- gularities, e. g. light losses in splices.	Bandwidth product	The bandwidth product is what results when the bandwidth of a glass fibre cable is multiplied with the length of the measured section.
Backtwist	The term relates to the stranding process. The technical design of the stranding machine twists the	Bandwidth-length product	Measurement for the frequency range that can be transmitted by a fibre optic cable one kilometre in length. It is a constant value.

BASEC	Abbreviation for the British Approvals Service for Cables. Certification body – Great		attenuation and, like decibel, a dimensionless ratio.
	Britain and Northern Ireland.	Bending capacity	The bending capacity indicates how far a product can bend
Basic raw materials	In addition to the basic raw material, synthetic materials		without forfeiting function.
	contain a range of other compo- nents such as stabilisers, soft- eners, filler and colour.	Bending cycle	Number of bends repeated in the drag chain (How often was a cable actively stressed during testing or during application?)
Batteries Act	The Battery Act came into force		
	in 2009 and also covers the registration and return of batte- ries.	Bending radii	Permissible radius for occasio- nal or constant bending of cables. The bending radius is defined as a multiple of the
Battery cables	Link between battery and gene- rator in the engine. They are developed, manufactured and delivered in accordance with customer requirements/product specifications.		cable diameter. The construction of the cables determines the minimum permissible bending radius, which allows it to be increased or reduced. The per- missible bending radii must be adhered to when laying power
Baud	Unit for a modulation rate in the transmission of communica- tions. One step per second. 1 bit/s = baud, 1Mbit/s = 1 Mbaud → see Bit		lines and cables. The standard values are between $15 \times D$ and $30 \times D$, depending on construction type and regulation. D is the outer diameter of the cable. (At
Bel	1 Bel = 10 decibels. In high- frequency technology, the com- mon unit of measurement for		Lapp: ÖLFLEX® FD with 5 x D or 7.5 x D).

Bending test at low temperature	Cold flexibility test for cables. A cold cable is wrapped around a pin and no cracks may occur in the insulation.	Braiding	Arrangement of interlaced wires or threads forming part of the structure of a cable. Copper wire braiding is used for screening, while braiding made of textile,
Binary	Property restricted to just two values.		plastic thread or steel wire per- forms supporting or carrying, i. e. mechanical, functions. Brai-
Bit	The smallest unit for represen- ting binary data, significance either 0 or 1. It is the basic unit for transmission information in digital systems. A byte is a group		ding can be close or wide mes- hed (coverage density in per- cent) with different angles of twist.
	of 8 bits.	Breakdown	This refers to electrical break- down between two conductors
Bit error rate, BER	Ratio of error bits to the overall number of bits received during a specific period.		or a conductor in water during the testing process, when the insulation can no longer with- stand the constantly increasing
Blue cable	Cable for intrinsically safe systems in hazardous locations. The compulsory colour code here is blue, RAL 5015. (For Lapp, ÖLFLEX [®] EB. These cable types are also available with	Breaking load,	voltage (breakdown voltage) or if a fault in the insulation results in a breakdown within a speci- fied time at a constant voltage. The product of nominal cross-
	shielding, e. g. ÖLFLEX® EB CY, UNITRONIC® EB CY).	ultimate load	section and tensile strength is the breaking load.
Braid angle	Variation in degrees between the longitudinal axis and the wire routing within the braid.	British Standard Wire Gauge	Also known as NBS (New British Standard), SWG (Standard Wire Gauge), Legal Standard and

	Imperial Wire Gauge. A modified version of the Birmingham Wire Gauge, a standard from Great Britain valid for all wires.
Broadband	Transmissions in which the sig- nals are transmitted by a high number of oscillations per second (glass fibre technology).
BS	Abbreviation for British Stan- dard. Standards body for Great Britain, similar to VDE in Ger- many.
BSI	Abbreviation for British Standard Institution – Great Britain.
Bundle	Several cores or pairs that are stranded into a group and in turn make up one element of a strand assembly.
Bus system	The bus system is a system of cables that transmits informa- tion and data.
Cable	Combination of several cores with protective layers (sheath) or sheathing of a single core. The sheathing protects the cores against all kinds of harmful

Glossary C

influences. Cables are used to transport electric current (power cables), transmit information using an electric current (data cables) or to transfer information using light waves (light waveguide cables). The term line is also commonly used, depending on the application. It is not possible to exactly delineate the two terms. In general, the term "cable" is used for installations outside buildings. In practice, however, the terms are used interchangeably. Combination of any number of cores under a sheath.

An assembly of linked, hinged support elements for directional, dynamic routing of all types of flexible bending power cables.

The cable type file is part of the CAE software from ePLAN[®]. The cable type file defines the number of cores, their colour code, the PE core and the screening for all cables. In the Lapp item master data for ePLAN[®], the cable type is assigned to the relevant item. This means that

Cable carrier

Cable data

	when a Lapp item is selected, each core is automatically assig- ned the appropriate colour code in the ePLAN [®] circuit diagram.	Cable set-up	Describes (from inside to out) the materials used for cables, their design and properties and the position of the individual ele- ments.
Cable gland	The brand name is SKINTOP® at Lapp. A cable gland is a device that is designed to guide a cable or an insulated conductor into a sheath and provides a seal and a restraint mechanism. It can also have other functions, e. g. kink prevention, strain relief, potenti- al equalisation, earthing, insula- tion or a combination of these.	Cable tree	Combination of individual cores or cables tied together with nylon ties, spirals or hose sheathing. The form of the harness is created when joining the wires, as the various consumers in the device and system circuits are physically separated and the connection with the individual cables
Cable gland size	The following sizes are currently defined in EN 60562: M 12 x 1.5; M 16 x 1.5;		makes constant branches ne- cessary.
	M 20 x 1.5; M 25 x 1,5; M 32 x 1.5; M 40 x 1.5; M 50 x 1.5; M 63 x 1.5; M 75 x 1.5; M 90 x 2; M 110 x 2. M stands for metric.	Cable type letter code	Identification of cables accor- ding to their design, nominal cross-section and number of cores, nominal voltage and con- ductor shape, which results in specific combinations of prede- termined letters and numbers.
Cable print	Coloured marking on the outer sheath of individual elements or cables using symbols, names and other markings.		For rules and standards, each of the letters and numbers has a specific meaning.

Cables for hand-held machinery	Handheld device cables are connecting and extension cables for power tools used in the open air or in enclosed spaces (e. g.	Carrier frequency	The frequency of the oscillation whose amplitude, phase or fre- quency is influenced by a signal.
	ÖLFLEX [®] 540 P/CP, ÖLFLEX [®] 550 P, ÖLFLEX [®] 400, ÖLFLEX [®] 500 P, ÖLFLEX [®] SF at Lapp).	Carrier frequency, hook-up wire	In carrier frequency systems, they are used to transmit sig- nals. Up to 120 carrier frequency channels can be simultaneously
Caloric load values	Caloric load is the energy that is released when cables and		transmitted in a cable.
	other building materials are burned.	CCC	Abbreviation for China Com- pulsory Certificate. Products requiring certification can only
Campus	The campus or primary wiring establishes the connection bet- ween the various buildings within a structured wiring sys- tem.		be imported to China, sold in China or used in Chinese busi- ness activities after the relevant CCC certification has been requested and granted.
CAN	Controller Area Network. Result- controlled communication sys- tem. As a generator of informa- tion, this reports to all connec-	CE	Abbreviation for Communauté Européenne (European Com- munity).
	ted nodes.	CE marking	Comprises the "CE" symbol and indicates a product's compli-
Canadian Electrical Code	See → CEC		ance with all applicable EU direc- tives. CE indicates that the natu- ral or legal entity which carries
Capacity	Electrical unit of measure, mea- sured in Farad, or electrical unit of measure V x A = Watts.		out or initiates the connection is satisfied that the product meets the requirements of all

	relevant harmonised standards and has been subjected to all mandatory conformity assess- ment procedures.	Characteristic impedance	Apparent impedance of an elect- ronic quadrupole; it is made up of the Ohmic resistance and the frequency-dependent resistan- ces of inductances and capaci-
CEBEC	Abbreviation for Comité Electro- nique Belge – Belgian certifica- tion body.		tances. The impedance of a cable repre- sents the ratio of the voltage waves advancing in a direction
CEC	Abbreviation for the Canadian version of the US National Electrical Code (NEC).		to the current wave moving in the same direction. Common values are 100, 120 and 150 Ohm. It is important that the
CEE	Mark for the European stan- dards institution: International Commission on Rules of Electri- cal Equipment.		impedance of the cable corres- ponds to the input/output im- pedance of the connected equip- ment.
CEI	Abbreviation for Commission Electrotechnique Internationale - International.	Chromatic dispersion	Grouping of wavelength-depen- dent effects which lead to a bandwidth limitation, such as waveguide dispersion and
CENELEC	Abbreviation for Comité Euro- péen de Normalisation Electro-		sheath dispersion.
Central element	techniques (Europe). See → Core.	Circular Mil (CM)	Measurement for conductor cross-sections in 1/1000 inch (0.001") from circuit diameter.
Central filler	The core is a design element onto which the other design elements are attached.	Cladding	Cladding is the glass layer which surrounds the core of the fibre optic cable.

Cable diameter range for which the assured properties of a cable gland apply.	
Abbreviation for Comité de Normalisation des Moyens de Production. Commission for the standardisation of machine tools and tools used in the French automotive industry. With fibre optic cables, the plas- tic layer on the surface of the sheath for preserving the origi- nal surface condition.	Colour code
Coating is a form of mechanical surface protection. It is a prima- ry plastic layer which is applied directly to the sheath glass for fibre optic cables.	
Concentric pair of conductors consisting of an inner conductor and an outer conductor, which completely surrounds the inner conductor. Coaxial cables are suitable for low-attenuation and distortion free transmission of high bandwidth signals. Because of their self-screening construc-	Colour print
	the assured properties of a cable gland apply. Abbreviation for Comité de Normalisation des Moyens de Production. Commission for the standardisation of machine tools and tools used in the French automotive industry. With fibre optic cables, the plas- tic layer on the surface of the sheath for preserving the origi- nal surface condition. Coating is a form of mechanical surface protection. It is a prima- ry plastic layer which is applied directly to the sheath glass for fibre optic cables. Concentric pair of conductors consisting of an inner conductor and an outer conductor, which completely surrounds the inner conductor. Coaxial cables are suitable for low-attenuation and distortion free transmission of high bandwidth signals. Because

tion, they are much less sensitive to external interference (e. g. RG coaxial cable at Lapp). Coaxial cables are used in high frequency telecommunications systems (cable TV, Ethernet applications) for transmission of high frequency signals.

For uniform marking of metallic cables and waveguides, various institutions including the EIA, DIN and IEC, have developed a standardised colour coding system. The colour codes for metallic cores assign totally different colours to the insulation of the pairs of cores for the individual standards. In addition to these standards, which are not consistently applied by manufacturers, colour codes specific to the manufacturer are often used.

Sheaths and insulation covers are usually printed with colour, using a metallic disc whose lettering is engraved inversely on its periphery. Using a scraper,

Communication	the excess colour can be scraped away. Interaction between two inde- pendent systems. Used for one- way or two-way exchange of messages in the form of voice, text, images or data.	Composite layer, composite sheath	The combination of an alumi- nium foil with the plastic/poly- ethylene sheath of a cable. The foil covers the core of the cable lengthways and overlapping, while the plastic part is placed on the outside. The outer sheath extruded onto it forms a homo- geneous connection with the foil
Compensating cable	Compensating cables are used together with a thermal element for temperature measurements. (Thermal elements such as Fe/CuNi iron-constantan (blue); NiCr/Ni nickel-chromium-nickel		due to the effect of temperature, resulting in an interconnected "laminated" aluminium foil sheath. Used in outdoor tele- communications cables.
	(green); PtRh/Pt platinum-rhodi- um-platinum (white). A thermal element consists of two conduc- tors made from different materi- als, between which there is an electric potential depending on	Compound	A material compound of polymer plastics with filler. Polymers are often compounded with colours, processing aids, fibres and other fillers.
	temperature. A compensating cable transmits this potential from the thermal element to a cold junction. There, based on the value of the potential, the	Concentric conductor	The concentric conductor (e.g. NYCWY) may be used as a PE or PEN wire and can also act as the screening.
	temperature can be assigned at the point of measurement.	Conditioning	Division of production length of cables into storage or delivery lengths. Standard forms include

coils with lengths of 50, 100

	and 250 m and drums with 250, 500 and 1,000 m, depen- ding on weight.
Conductance	The electrical conductivity is the inverse of the electrical resistance.
Conductor	Single-conductor cables are single- or multi-wire cables, used mainly for fixed laying with rubber or plastic insulation (ground wire). A non-insulated wire of a materi- al whose high number of free electrons makes it suitable for carrying electric current (parti- cularly copper and aluminium). Component allowing a connec- tion that is easy to break and reestablish between two light waveguides. The insertion loss from a connector is normally higher than that from a splice. In signal and power engineering, connectors are used for connec- ting cables with different num- bers of poles and in a variety of different designs. Because of the associated ease of service compared to fixed cable connec- tions, connectors are being used

in an increasing number of applications. (e. g. EPIC® at Lapp). Plugs are components that enable electrical conductors to be connected and are designed to create detachable electrical connections with an appropriate counterpart. Plugs may not be inserted or removed during proper use (under electrical voltage). A distinction is made between free and fixed plugs according to the mounting. The plug is made up of the plug housing and the contact elements. (e. g. EPIC® brand from Contact at Lapp). Central component for starshaped passive light waveguide networks. It connects numerous transmitters and receivers and distributes the signal light output supplied by a connected transmitter evenly to all connected receivers. Part of an error voltage which

may be contacted by members of the general public.

The Lapp ÖLFLEX[®] brand is synonymous with connecting and control cables. The key features

Contact voltage

Control cable

of control cables are: Bare or tin plated fine copper wire conductors, PVC insulation, stranding of cores with back twist, special PVC compound outer sheath. Different ÖLFLEX® designs include:

- a) Different coloured cores,
- b) Numbered cables. ÖLFLEX® cables have the following properties: Flexible, largely resistant to all kinds of oils. alkalis and acids. ÖLFLEX® are used in the following areas: As control cables in machine tool manufacture and general engineering, plant construction, in all kinds of industrial plants, in measurement and control engineering, process engineering, data processing etc. ÖLFLEX® control cables are highly recommended for these applications due to their excellent flexibility, the good general chemical resistance, the clear core coding and the problemfree compatibility with multipole machine connectors.

Copolymere	Mixture which polymerises from two or three monomers to form a chain.
Copper	The best material for producing electrical conductors. Excellent conductivity of heat and electri- city. In addition, copper (Cu) has very good ductility and good strength properties.
Copper base	The monetary value used to value the copper contained in cables in the price.
Copper weight Copper-clad	It expresses the mass of the copper contained in the cables. This wire is made up of an alumi-
aluminium wire	nium core and a copper sheath.
Core	The optical core in glass fibre cable technology.
Core check, response at increased temperature	In order to determine the influ- ence of heat on the mechanical properties of, for example, insu- lating covers, a test item is placed in a device for heat pres- sure testing which has already reached the testing tempera-

205

	ture. The wall thickness of the test item determines the test load. After a specific storage period in the heating cabinet and subsequent cooling, the impres- sion depth is measured with the reading microscope.	Core Ident Code
Core check, response with thermal shock	The core insulating cover is che- cked for thermal shock by wrap- ping the cores or strips from the insulating cover around a defi- ned mandrel and storing them in a heating cabinet for approx. 1 hour at 150 °C. After removing the cores/strips and cooling them to room temperature, these test items should not dis- play any visible cracks.	
Core diameter	The core diameter is the diame- ter of the central light-carrying section of a light waveguide.	Core joint
Core group	For the transmission of signals or energy, two or more stranded cores are required. Using two cores, it is possible to form a cir- cuit that can transmit energy or signals.	

VDE-DIN-colour code for colourcoded low-voltage cables according to VDE 0293-308/HD 308 S2.

Coloured or numbered identification of single cores. A Lapp development: The internationally proven ÖLFLEX® colour code is based on the colour-coded identification of the single cores. Ten basic colours are combined with 2 mm wide colour spirals. This results in 102 colour variations. This colour marking is particularly advantageous compared to cores printed with numbers, as it means the cores can be assigned much more quickly in a device (saving time).

Core joints combine synthetically insulated signal cable and telecommunication cores in a conductor diameter range of 0.35 – 0.9 mm. The cores are pressed together using a special core-joining pliers and thus placed solderless into the connection sleeve.

circular as possible. Gaps in the

layer structure are filled with

insulated fillers or central cores

C Glossary

Core print

In the manufacture of cables, cores are principally identified by four methods:

- 1. Cores can be manufactured in one primary colour.
- 2. Marked with various colour codes.
- 3. Printed.
- 4. A combination of the different colour codes with printing. It must be noted that only earth conductors are to be greenyellow in colour and that these colours may not be used if there is any risk of confusion with other cables.

Core stranding

Without stranding, wires positioned parallel to one another would deform when bent. The outer wires would be overstretched and the inner wires compressed. The individual wires are twisted together in a spiral to maintain the flexibility and mobility of the conductor. The result is known as core stranding.

Core stranding with more than four cores

When constructing a cable, the best layer structure of the stranding elements is always selected, to obtain cables that are as

	(filling elements). In flat cables, the structural elements (groups or cores) are parallel to one ano- ther and can be stranded.
Core wrapping	Core wrappings are used to protect the insulating covers of rubber-insulated cables. They are mainly made from foil or fabric tape.
Core, conductor, insulated wire	Individually insulated conductor, e. g. made of single- or multi- wire copper or aluminium. Core = conductive component of cables with insulation coloured or marked numerically.
Corrosion	Degradation of minerals and materials due to mechanical and chemical environmental influen- ces.
Coupler	Passive optical components for transmission of light between a light source and a light wave-

guide or between several light

waveguides. Couplers that allow

light waveguide networks for

	connecting multiple transmitters and receivers to be set up are of particular importance (see → T coupler).	
Crane cables	Crane cables are supply cables for cranes in the open air or indoors (e.g. ÖLFLEX® CRANE at Lapp).	
Crimp connection	Mechanical joining technology.	Cross-linked polyethylene XLPE
	When joining, for example, coaxial connectors with a coaxi- al cable using a crimping tool, a metal sleeve is pulled over the shielding and pressed together.	Cross-linking agent
Cross-linked	The term refers to a manufactu- ring process for elastomers, thermoplastics and duroplastics. It describes the fact that particu- lar chemicals are used to change the original linear alignment of the macromolecules from planar to solid structures. The materials used include sulphur com- pounds for rubber and peroxides	Cross-section
	for thermoplastics and duroplas- tics. Cross linking is carried out under the influence of heat and pressure, and high energy rays for thermoplastics. Cross linking	

is a permanent and irreversible process and plays a critical role in determining the actual material properties (it gives rubber its permanent elasticity and improves the thermal, mechanical and electrical properties of polyethylene).

Cross-linked polyethylene.

Cross-linking agents or vulcanising materials in rubber compounds are either sulphur (for natural or synthetic rubber) or peroxide (for silicone, EPDM). Sulphur cross linking begins at room temperature and intensifies as the temperature is increased. With peroxide cross linking, oxygen is released for cross linking at a specific temperature.

Cross-sectional area of the conductor. A distinction is made between the geometrically defined nominal cross-section and the conductive cross-section, which is derived from the electrical \rightarrow resistance. A certain maxi-

	mum resistance is assigned to the nominal cross-section, within which the conductor structure is specified. The cross- section is normally specified in mm ² . However, for certain types of cables, which are always made up of single-core conduc- tors (telecommunications cab-	Data transmission cable	Cables whose structure make them suitable for transmitting electric data processing pulses with minimum errors. Simple (pair) or more complex (scree- ning) constructions are required depending on the susceptibility of the data pulses to faults (brand: UNITRONIC® at Lapp).
	les), the conductor diameter is used for marking or description.		Computer cables (Li2YCY-PIMF) or other, at least twisted in pairs, normally screened and often
CSA	Abbreviation for "Canadian Stan- dards Association". Canadian standards and testing body. Similar to VDE in Germany.		individually screened cables, e. g. UNITRONIC [®] LIYCY (TP), UNITRONIC [®] BUS; UNITRONIC [®] LAN, telephone cable, also light waveguide cables. TP = Twisted
Current	Electrical unit, measured in Amperes. Current = Voltage/		pair.
	Resistance.	Data transmission rate	Unit of measure for the trans- mission speed of a data trans-
D.C.	Abbreviation for direct current.		mission. It is measured in bit/s or byte/s.
Dark current	Current at the output of an optical receiver if no radiation is present.	Data transmission, data transfer	Optical data transmission is always serial. Before data trans- mission, pending parallel data
Data bus	A system of associated cables, to which data bits are transfer- red.		is always prepared for serial transfer and is post-processed to a parallel form after the trans- mission. We also refer to bit seri- al data transmission, as all of

Decibel	this data is always transferred as digital signals. A decibel is the logarithmic ratio	Density unit	Result of the density of a body relative to the density of water (= 1). Corresponds to the speci- fic weight.
	of two levels (e. g. input level to output level). The unit of measu- re has no dimension and is spe- cified in dB.	Designation label	Fixing elements with which single wires, bundles, cables and cables on machine parts or walls can be permanently
Degrees of protection	Protection of electrical equip- ment by housing, covers etc. Protection of equipment against the ingress of foreign bodies and water.		fixed in place. They are transpa- rent or coloured, usually made from nylon and can display indelible information about their content.
DEL	Abbreviation for Deutsches Elek- trolytkupfer für Leitzwecke (Ger- man electrolyte copper for con- duction) DEL is the stock market code for 99.5% pure copper in Euro/100 kg (see T17).	DESINA®	The Verein Deutscher Werkzeug- maschinenfabriken e. V. (VDW) [German Machine Tool Manufac- turing Federation] developed DESINA® (DE centralised and S tandardised IN stAllation tech- nology), a comprehensive over-
DEMKO	Abbreviation for Danmarks Elek- triska Materialkontroll – Danish standards and testing body, tes- ting and certification body, tasks similar to VDE/UL.		all concept for standardisation of electrical installation of equip- ment and machinery. Colour codes of cables: Servo cable, screened: Sheath colour orange RAL 2003
Density	Ratio of the mass to the volume of a body. If the mass is M and the volume is V, the radio is the density $d = M : V$.		Cable for measuring systems, screened: Sheath colour green RAL 6018

Power cable, unscreened: Sheath colour black RAL 9005
24 Volt control cable, unscreened: Sheath colour grey RAL 7040 (similar to 7001)
Field bus hybrid cable, Cu and light waveguide: Sheath colour violet RAL 4001
Sensor/actuator cable, unscreened: Sheath colour yellow RAL 1021

DeviceNet™

Simple CAN-based communication system for networking of industrial automation equipment (limit transmitters, photo sensors, motor starters, frequency controlled drives, control terminals and similar) with master control equipment. Two screened twisted pairs of conductors within a cable are used as the transmission medium. One is used for communication (with transmission rates of 125, 250 or 500 kBit/s for cable lengths of 500 m, 250 m or 100 m) and the other to supply power to the connected equipment (max. 8 A for 24 V DC voltage).

Diffusion

Dielectric refers to the characteristic of certain substances to be electrically non-conductive – therefore insulating. Any electrically insulating material in which an external electrical field (e. g. between the plates in a capacitor) builds up an opposing field is referred to as dielectric. A dielectric causes a static electrical field to be retained even without a continuous supply of electric charge.

Dielectric constant (DC) A material constant for a dielectric. The dielectric constant specifies how many times greater the capacitance of the capacitor will be if the insulating material is used as the dielectric instead of air. Multiplying the DC of the empty space by the dielectric constant gives the DC of the dielectric.

> The primary cause of attenuation in a light waveguide. It is the result of microscopic fluctuations in the density of the glass, which deflect part of the

device. The device is portable. The coupling connector contains earthed contacts and is thermoplastically moulded to the cable. Connecting cables are, for example, used to connect porta-

Dispersion of the signal running time in a light waveguide. It is made up of various components: mode dispersion, material dispersion and waveguide dispersion. As a result of its dispersion, a light waveguide acts as a low-pass filter for the signals to be transmitted (see \rightarrow Trans-

Abbreviation for Deutsche Kommission Elektrotechnik und Elektronik Informationstechnik [German Electrical Engineering, Electronics and Information Technology] in DIN und VDE. It is a branch of the DIN and its agency the VDE (Electrical Engineering, Electronics and Information Technology Federation). As a national organisation for formulating standards in electrical engineering and information

ble telephones.

mission function).

	guided light sufficiently from its course that it actually leaves the light waveguide. With light wave- lengths above 1600 nm, this effect is very weak, however it increases at short wavelengths by the wavelength to the power of four (Rayleigh dispersion).	Discovier
Digital signal transmission	Transmission of a signal using binary light pulses in a period time pattern.	Dispersion
Dimension	A term for the geometric size of a wire or strand, expressed as a diameter or cross-section. Often used in conjunction with the num- ber of cores, e. g. 18 x 1.5 mm ² .	
DIN	Abbreviation for Deutsches Insti- tute für Normung [German Stan- dardisation Institution]. It is based in Berlin, Germany.	DKE
DIN EN	European standard added to the German body of standards.	
Direct line, connecting cable	A connecting cable is a cable that has a coupling connector through which the network con- nection is established. The fixed connection is found inside the	

technology, the DKE deals with
important interdisciplinary iss-
ues such as safety, EMC, compo-
nents and performance of con-
ventional electric circuits, mobi-
le wireless communication, soft-
ware and Internet protocols.
DKE is the German member of
the European and global stan-
dardisation organisations. The
DKE implements and publishes
the results of standardisation
work by the \rightarrow IEC, \rightarrow CELENEC
and \rightarrow ETSI in national stan-
dards.

Drag chain cables Drag chain cables are cables used in power chains (e. g. ÖLFLEX® FD, ÖLFLEX® SERVO FD, UNITRONIC® FD plus at Lapp).

Drain wire Single- or multi-wire non-insulated conductor that is run in close metallic contact under a screening.

Ductility, flexibility As all cables and cores are liable to mechanical stress, they are also checked for flexibility, i. e. bent several times around various bending radii. There may be no visible damage to the cables, sheaths, inner or outer protective covers after testing. All stranded elements, braidings and wrappings must also remain correctly in place. In addition to the diameter of the strand assembly and the number of elements to be stranded, the length of lay plays a significant role in the flexibility of a cable. Based on the following principle: The shorter the length of lay, the more flexible the strand assembly.

If there are "openings" detected in the cable, dummy elements or dummy cores are inserted and stranded together with the cable assembly. Dummy elements are generally made from cheap, inferior materials such as polyethylene twine, spun rayon and cotton. They are usually the same size as the real stranding elements.

Duplex operation

Dummy

Transmission of two independent signals over a particular distance.

Duroplastic	In contrast to thermoplastics, after heating duroplastics can- not be deformed by heating	EIA	Abbreviation for Electronic Industries Associations.
	them again. Duroplastics are required in the cable industry, e. g. as cable fittings or connec- tors.	Elastomere	Elastomers are widely used for sheathing and insulating cables because of their excellent elec- trical and mechanical proper- ties. Elastomers are high-mole-
Earth connection	Earthing of a point of the circuit, such as the neutral point, neu- tral conductor, midpoint or outer conductor.		cular materials, whose elasticity depends on the degree of cross- linking. The biggest difference between elastic and plastic materials lies in loading and re-
Earth electrocode, ground system	Conductor that provides a con- ductive connection to earth. For example, it can be embedded in		lief. After relief, an elastic mate- rial reverts to its original shape.
	the ground or have a large area in contact with the ground.	Electric circuits	In a cable, circuits with different voltages can be operated if they are insulated for the maximum
Earthing	Earthing guarantees a clear refe- rence potential for screening the active and passive components		voltage that occurs - VDE 0113 Part 1 and VDE 0100 Part 520.
	of a network.	Electric diameter of conductors	Determined on cables by electri- cal resistance measurements.
ECAD	The ECAD component standard		
	is a manufacturer-independent standard for describing item and engineering data in electrical engineering, specifically for machine and equipment manu- facture.	Electric Field	When voltages are applied to cables, electrical fields are for- med, which can take on different shapes depending on the cable construction. In the low voltage

	range, up to approx. 1 kV, elec- trical fields have only a neglig- ible influence on the dimensions of the insulating walls. To gua-		e. g. cables over edges; stepping on; pulling of cables; chemical: e. g. oils; thermal: heat, cold.
	rantee operational safety, there are high demands on the materi- als and dimensions in the high voltage range. An electrical field	Element	Individual component of cables, a collective term for cores, pairs, bundles and carrier organs.
	is represented by field lines. The density of these field lines indi- cates the force that exists bet- ween the two points on a field	Elongation at break, ultimate elongation	Elongation at break is the ratio of the elongation to the initial length when a break occurs.
	line (voltage).	Elongation, extension, stretch	Extension of a body by mechani- cal forces. In the cable industry,
Electric resistance	Resistance with which an elec- tric circuit opposes the passage of the current. Resistance is spe- cified and measured in Ohms.		it is tested using a mechanical testing method to determine the tensile strength of all compo- nents.
Electricity	Form of energy based on the flow of free electrons. Electricity is produced in generators.	ELOT	Hellenic Organization for Stan- dardization. Certification body for Greece.
Electromagnetic protection	Protection against faults that could affect the cable from out- side (immisions). Protection against faults caused by the cable (emissions). Braid, e. g. copper (tin plated) \rightarrow flexible \rightarrow coverage. Protection against external influences: mechanical,	EMC	Abbreviation for Electromagne- tic Compatibility. The ability of a system, machine or item of equipment to work satisfactorily in the electromagnetic environ- ment without itself causing any electromagnetic interference

	that would be unacceptable for	ePLAN®	$e\mbox{PLAN}^{\mbox{\tiny (8)}}$ is the leading CAE soft-
	all systems, machines or equip-		ware for planning electrical
	ment in that environment.		designs and documentation in
			machine and plant construction.
ЕМК	Abbreviation for electromotive		The Lapp item data and the
	force.		cable type file enable the indivi-
			dual cores in the ePLAN [®] circuit
EMS	Abbreviation for Electromagne-		diagram to be assigned automa-
	tic Susceptibility. This is the		tically. ePLAN [®] is produced by
	functional resistance of a speci-		ePLAN [®] Software & Service
	fic object to electromagnetic		GmbH & Co.KG.
	interference factors.		See www.eplan.de
EN	Abbreviation for European Stan-	EPR	Abbreviation for Ethylene Propy-
	dards.		lene Rubber.
EPDM	Abbreviation for Ethylene Propy-	Ethylene-Propylene-	See \rightarrow EPDM
	lene Dien Monomer rubber. Che-	Rubber	
	mically cross-linked elastomer		
	with good electrical insulating	ETSI	Abbreviation for European Tele-
	properties and outstanding flexi-		communication Standards Insti-
	bility at low and high temperatu-		tute. Its duties include develo-
	res.		ping harmonised standards for
			an integrated European commu-
EPIC [®]	Abbreviation for Environmental		nication system.
	Protected Industrial Connector.		-
	Registered trademark, a robust	Explosive atmospheres	See VDE 0165 Part 1. Cables
	industrial connector from Con-		with a thermoplastic, duroplastic
	tact.		or mineral insulated metal
			sheath can be used for fixed rou-

ting. There may not be any cavities in the core bundle (not hose cable). The extruded embedding material and the fillers, if used (press extruded), must be "nonhygroscopic". Flame retardant in compliance with IEC 60332-1. Cables for mobile and transportable equipment must have connecting cables with an outer sheath made of heavyduty polychloroprene or an equivalent synthetic elastomer or a heavy-duty rubber insulated cable or connecting cables with a comparably robust construction.

Extension cord A mobile cable assembled with a coupling connector and socket. The couplings are integrally moulded onto the cable using thermoplastics and contain protective contacts.

Extrusion line It is powered by a motor and coils through a cylinder in a spiral. The filler is made up of thermoplastic prepared in the form of granules. Granules, i. e. a free-flowing mixture of grains of equal size, are the delivery form of various plastics for cable manufacture; in other words, an extruder is a system in which a continuous supply of granules is heated, compressed, mixed and homogenised.

Unit of measurement for electrical capacitance.

Abbreviation for Fibre Distributed Data Interface. Network type made up of a double ring with a 100 Mbit/s transmission rate and using waveguides as the transmission medium.

Made up of one or more materials and is used to mechanically insulate the fibres and to protect them against damage.

Sensors and actuators are conventionally connected to a controller or evaluation unit using an analogue 4 – 20 mA signal. With this technology, a 2-core cable is necessary for each connection between the sensor or actuator and the controller. In

Farad

FDDI

Fibre cover

Fieldbus technology

addition, an input/output circuit (I/O) must be provided for each sensor and actuator in the controller (normally a PLC or PC). The picture looks very different when using a field bus system. In this case, all devices are connected to a bus cable (2, 4 or 5 cores depending on the field bus system). An interface card is used instead of the input/output circuits. This saves on I/O cards. reduces the space required in the control cabinet and permanently cuts the wiring costs. In conventional systems, information (e. g. measured values or a fault signal) can only be transmitted in one direction and in very limited amounts. This can be from the sensor to the controller or from the controller to the actuator. By contrast, in a field bus system information can be exchanged bidirectionally via the digital bus. As well as the actual process data such as measured values (e. g. temperature) and control variables (e.g. speed), parameters such as the measuring range, measuring Glossary F

point codes (TAG), filter properties, maintenance or fault signals etc. can be transmitted. The advantages that this brings are obvious. Commissioning and maintenance are simplified and the flexibility of the system (e. g. with central measuring range selection) is improved. This normally also enables cost benefits to be achieved compared to conventional solutions.

Filler

Filler wire

Used as a component of insulating and sheathing compounds. The fillers in rubber compounds, for example, mesh directly into the rubber molecules and give them good mechanical abrasion resistance. Important fillers include siliceous chalk, soot and aluminium oxide.

Usually a tin-coated copper wire which should have contact with the aluminium layer of the screen along the entire cable length. In order to ensure the filler wire doesn't break when the cable bends, it must lie very loosely (undulating) on the cable

Filler, valley sealer	core. The filler wire should be able to pass over any possible breaks in the screen. Filler or support element in indi- vidual stranding layers in cables.		with multiple colours) and nor- mally with small cross-sections (0.08, 0.14 or 0.25). The indivi- dual cores can normally be sepa- rated. Application: In electro- nics, for connecting circuit boards.
Fire behavior	Property which describes the behaviour of the cable when on fire (in particular, fire propa- gation).	Flat type cable	Several individually insulated conductors in parallel with a sheath for mechanical protec- tion, produced in such a way as
Fire resistant	Property of materials used for insulation and sheathing that are slow to catch fire when exposed to heat and are self-		to give a rectangular cable cross-section. Used in crane systems (ÖLFLEX® – Crane F).
Flame retardant	extinguishing when the heat source is removed (→ hard to inflame). Thermoplastic and elastomer	Flexibility	A product (relating to cables in this case) is flexible if it can be moved around without impairing its functionality (e.g. lift cable or robot cable).
	compounds for insulation and sheathing are influenced by additives so that they are slow to catch fire when heat acts on them.	Fluorethylenpropylen (FEP)	Product from the TEFLON® series. A plastic for high tempe- ratures, with excellent chemical resistance and excellent electri- cal properties but not economic-
Flat cable	Ribbon cable in which the indi- vidual strands are welded together to form a ribbon (often		al. TEFLON [®] is a registered trademark of the company Du Pont de Nemours.

G	Glossary

Foil	Plastic foil, metal foil and metal clad plastic foil are used for different purposes. Plastic foil provides mechanical protec- tion, e. g. as padding under a screening braid or around the cores below when stripping to protect against incisions. Metal foil is used for electrical screening.		which engineering and planning offices create specifications and tenders for industry, infrastruc- ture and building services pro- jects. Lapp tender texts in the com- mon formats GAEB 90 (*.d81) and GAEB 2000 (*.p81) are available for download from www.lappkabel.de.
Frequency	Number of changes of polarity in an alternating current per second; the unit of measure is Hertz (Hz).	General cable tie	General cable ties are coloured or transparent fixing elements (normally made of nylon) that can be used to secure individual wires or cables in a bundle. The
FTP	Abbreviation for Foil Shielded Twisted Pairs; in these cables the twisted pairs of cores are		teeth on the inside provide a per- manent connection.
	screened by a common plastic clad aluminium foil.	Glass fibre cable	Used to transmit data. They use light as the transmission medi- um rather than electric current.
Full duplex	Full duplex transmission allows simultaneous transmission and reception of signals.		Dielectric waveguide, used to transmit signals using light waves. Also known as a fibre.
GAEB	Abbreviation for "Gemeinsamer Ausschuss Elektronik im Bauwe- sen" [Joint Committee for Elect- ronics in Construction] and describes the data format in	GOST	Standards institute in Russia (comparable with the VDE in Germany, British Standards in the UK, IMQ in Italy and UTE in France)

Gradient fibre	Light waveguide with a gradient profile, i. e. with a → refraction index profile that constantly changes across the cross-sectio-	Hardness Harmonizing key	See \rightarrow Shore \rightarrow See Table T6.
	nal area of the light waveguide. The profile of standard gradient fibres can be approximated as 1 < g < 3 by an exponent profile.	HD	Abbreviation for harmonisation document. In the EU, HDs have the status of a harmonised Euro- pean standard (like ENs).
Grid	The exact spacing between the conductors in a ribbon cable.	Heat of combustion	The temperature or heat released when a cable is burned (see → Thermal load).
Gusset	Cavities that inevitably occur between the cores twisted into a strand due to their circular cross-section. When using sec- tor-shaped conductors, practi- cally no gussets occur.	Hertz	Unit of measure for the fre- quency of an alternating current (in Germany 50 Hz for mains cables).
Halogen free	Refers to materials that do not contain any halogens such as chlorine (Cl), bromine (Br), iodi- ne (I) or fluorine (F).	Hood	The upper section of the housing can have a straight or lateral cable outlet. The hood can be freely combined with an externally mounted, surface mounted or coupling housing.
HAR	Quality mark for a harmonised cable complying with CENELEC HD standards, issued only by HAR testing bodies, e. g. VDE, USE, BASEC, USE, SEV.	Hood termination	The insides of the end plates are coated with a thermoplastic adhesive. The end plates are used for sealing pressure

	monitored, moisture-resistant cables and tubes with a diame- ter of 5 to 10 mm.
Hybrid cable	Cable with different trans- mission media, such as light waveguide, copper conductor, HF conductor.
ICEA	Abbreviation for Insulated Cable Engineers' Association. A sub- committee of NEMA – USA.
IEC	Abbreviation for International Electrotechnical Commission. Standards committee for inter- national standardisation of electrical materials and inter- national commission for stan- dardisation in the electrical engineering and electronics sector.
Imprinting	Marking of cables using a relief imprint (no colour). This tech- nique is only possible when the sheath is warm as the marking is impressed into the

Industrial machinery for USA

Insertion loss,

insertion attenuation

The following general rules apply to construction and operation of machinery in the USA: The machinery must comply with federal safety laws issued by the Occupational Safety and Health Administration (O.S.H.A.: www.osha.gov) and the applicable national codes (statutory regulations) at the installation location. Machinery is only classed as safe if it has been designed and manufactured in compliance with applicable standards (NFPA 70, NFPA 79....) and its safety has been tested and declared safe by a Nationally Recognized Testing Laboratory (N.R.T.L., www.osha.gov/ dts/otpca/nrtl/).

Attenuation caused by inserting an optical component into an optical transmission system. The attenuation that is caused in an optical transmission system by inserting an optical component, e. g. a plug or $a \rightarrow$ coupler.

material positively or negatively.

Insulation	Preventing the passage of elec-	Interbus	At the lowest level of the auto-
	trical currents using non-con-		mation hierarchy model, there
	ductive materials. Materials are		are particular requirements for
	non-conductive (suitable for use		a communication system. Con-
	as insulators) if they do not con-		nection costs, real time capabi-
	tain conduction electrons or only		lity and short cycle times are
	isolated electrons. These materi-		of crucial importance. The data
	als include various plastics, rub-		to be transmitted, normally mea-
	ber, ceramic, porcelain, glass,		sured and control values, are
	paper, resin. (Insulation in capa-		typically only a few bits in length.
	citors and radio frequency		INTERBUS-S, standardised in
	cables is referred to as \rightarrow dielec-		DIN E 19258, has a summation
	tric).		frame protocol and is designed
			specifically to meet these requi-
Insulation resistance	The electrical resistance of a		rements. With a clock speed of
	non-metallic material between		500 Kbit/s and a net data rate
	two electrodes, measured using		of approx. 50%, even time-criti-
	a DC voltage.		cal controllers can be implemen-
	Ű.		ted using a bus system. With
Intensity	Power density at a surface		around 1,000,000 INTERBUS-S
	through which radiation penetra-		nodes in use worldwide, the sys-
	tes, e. g. at the radiating surface		tem is one of the leading field
	of a light source or at the cross-		bus systems. In some areas,
	sectional area of a light wavegui-		e. g. networking of frequency
	de (standard unit W/cm ²).		converters and drive technology,
	· · · · ·		it is actually the market leader.
Interactive	Property of two systems to influ-		, , , , , , , , , , , , , , , , , , , ,
	ence one another in order to	Interface	Connecting point in a technical
	exchange messages.		system that has particular pro-
	5		perties enabling connection to

another technical system.

Glossary

242

Internet	Worldwide virtual data network.	ISO	Abbreviation for International Organisation for Standardisa-
Intrinsically safe	Electrical installation that is, in its own right, safe from the point of view of risk of explosion, i. e. no ignitable sparks can		tion. Committee that develops internationally recognised stan- dards.
	occur in the installation. All parts, including the cables, should be blue (RAL 5015) – e. g.	Joint	Interconnection point between (data) transmission paths.
	at Lapp ÖLFLEX [®] EB, ÖLFLEX [®] EB CY, UNITRONIC [®] EB CY).	Kink	The cable has been forcefully bend over a sharp edge, causing plastic deformation of the indivi-
IP Code	A system of designations used to indicate the degree of protec- tion provided by a housing against access to hazardous components, ingress of solid		dual strands and wires. This results in grooves that promote breakages on the individual wires.
	foreign bodies and/or water and to provide additional infor- mation relating to this protection	kV	Abbreviation for Kilovolts. 1 kilo- volt equals 1,000 Volts.
	(e. g. EN 602529).	LAN	Abbreviation for Local Area Network. Physically limited net-
ISDN	Abbreviation for Integrated Ser- vices Digital Network. Integrated service digital telecommunica-		work used for communication within a building or company.
	tions network. Suitable for trans- mission of voice, text, images and data.	Laser-printer, ink-jet printer	With this method, small produc- tion batches can be printed at low cost as there is no need for a print wheel to be made.

	The downside, however, is that it produces a print result of les- ser quality.
Laying temperature	When installed, the cable tempe- rature should not be below +3 °C. Cables with sheathing and insulation are sensitive to ben- ding and impacts when exposed to cold.
Leading protective ground	The PE contact in a plug establi- shes the first contact and is the last to disconnect, and is marked as the protective earth symbol.
Leakage current	Leakage current is the current that flows via the functional insulation of a consumable to earth or an external conductive part. It can appear as a pure active current or as an active current with a capacitive value. In VDE 0700-1 "Household and Similar Electrical Appliances – Safety", the following leakage currents are specified: • For devices of protection class 0 and 01 0.5 mA

 For portable devices of protection class I 0.75 mA

- For non-portable motorised equipment of protection class I 3.5 mA
- For non-portable heating equipment of protection class I
 0.75 mA or 0.75 mA/kW, max.
 5 mA
- For devices of protection class II 0.25 mA
- For devices of protection class
 III 0.5 mA

When taking leakage currents for an entire system (also important for residual current protective equipment) into consideration, both the leakage current (residual current) of the cables and the leakage current of the consumable must be accounted for.

The twist length is the distance (measured in the direction of the longitudinal axis) covered by the elements of a layer after being twisted by 360°, e. g. 40 mm. It is usual to specify the number of twists per metre, e. g. 40 mm = 25 twists.

Length of lay,

length of twist

Lever series	To lock the EPIC [®] rectangular connector, there are single or central levers available for the one-handed locking of upper and lower housing sections, the dou-	LiY	Individual cores (strand) predo- minantly 0.14 and 0.25 mm ² LiYv: Tin plated individual cores (strand).
	ble levers are used for the two- hand locking.	LIYCY	Individual cores with copper screening (C stands for copper).
Li2YCY	Polyethylene screened individual cores.	LiYY	Multi-core stranded cable (ÖLFLEX®, UNITRONIC®).
Li5YCY	TEFLON [®] PTFE screened indivi- dual cores. TEFLON [®] is a brand name of the company DuPont de Nemours.	Longitudinal water tightness	Achieved by filling the gaps bet- ween the core arrangements with various kinds of filler (e. g. petroleum jelly filling).
Lift cable	Lift cables are control cables with strain relief used for lifts, gantry cranes, teach pads, etc. (e. g. ÖLFLEX [®] LIFT, ÖLFLEX [®] CRANE at Lapp).	Loss factor	The loss factor depends on fre- quency, temperature and capaci- tance. This factor is the ratio of effective power to idle power with a sinusoid voltage.
Link	A link represents a complete section of cabling from the floor distribution board to the data terminal input. It includes all connecting sockets and plugs, installation cables and patch cables. The quality of a link is defined using classes, the quali- ty of the individual components using categories.	Machine set-up for core insulation – Extrusion	The following single units have mainly conventional extrusion lines for core and insulating covers: Overend take-off, wire straightener, wire pre-heater, capacitance bridge, extruder, embossing or marking device, cooling section, eccentr-

Master	icity measuring device, diameter scanner, high-voltage testing device, double roller haul-off machine, accumulator and doub- le bobbin winder. Central bus subscriber that con- trols bus access. All other subscribers operate as slaves	Mica powder	Natural mineral product that is pulverised and used as a separa- ting agent and lubricant either on its own or mixed with talcum. In the form of foils and strips, mica is also used for insulating conductors exposed to high thermal loads.
	(see \rightarrow ASI).	Microbending	Bending of fibres that have local axial deviations of a few micro-
Master-Slave principle	The master element issues inst- ructions and the slave elements follow them. With decentralised bus control, for example, an automation device acts as the master element and		meters and physical wave- lengths of a few millimetres, for example. Microbending causes light losses and thus increases the \rightarrow attenuation of the fibres.
	issues access rights for the other components (slave elements – see \rightarrow ASI).	Mode	Discrete light wave forms that can propagate in a light wave- guide.
Material dispersion	With a non-monochromatic light source, the dispersion that results from the dependency of a material's refraction index n on the wavelength and from the	Mode dispersion	The signal distortion in a light waveguide caused by overlap- ping modes with different run- ning times.
	light velocity in that material.	Modem	Device for adapting digitally ope- rating data stations for analogue

telecommunications channels.

Modulation	A network signal to be transmit- ted is modified by a carrier sig- nal.	Mutual capacity, operating capacity	For four, pair or phantom cable circuits: the capacity between the cores a and b of these cable circuits. With one core: the
Monomode fibre	Light waveguide with small → core diameter in which only one mode, the basic mode, can be propagated. This fibre type is		capacity between a conductor and all remaining interconnected conductors of a cable.
	particularly suitable for broad- band transmission over long dis- tances as its \rightarrow transmission bandwidth is only limited by \rightarrow	Nanosecond	Billionth of a second. Time unit for the internal switching speed of computers.
	chromatic dispersion.	Near-end crosstalk, far end crosstalk	In multi-pair data cables, the field effect of the signal trans-
Motor cable	Motor cables are supply cables for electric motors (e. g. ÖLFLEX® SERVO FD at Lapp).		mission for one pair induces an interference signal in adjacent pairs. Crosstalk does not depend on the length and is greater as
Multimode fibre	Light waveguide whose core dia- meter is large compared to the light wavelength and in which a large number of modes can therefore be propagated. A gra- dient profile (\rightarrow gradient fibre) allows the \rightarrow mode dispersion to be kept low, allowing large trans- mission bandwidths to be achie- ved, although these can be		the frequency increases. The dif- ference between the effective signal and the interference sig- nal measurable at the adjacent pair is referred to as crosstalk attenuation and is specified in dB. We differentiate between: NEXT (Near End Crosstalk) and FEXT (Far End Crosstalk).
	exceeded using \rightarrow monomode fibres.	NEC	Abbreviation for National Electri- cal Code. Group of standards for the safety of electrical equip-

	ment, e. g. electrical equipment	NFPA 79	NFPA 79 is the section of the
	installations in the low voltage		National Electric Code (NEC®)
	range up to 600 V – USA.		which includes the requirements
			for electrical wiring of industrial
NEMA	Abbreviation for National Electri-		machinery. NFPA 79 generally
	cal Manufacturers' Association.		applies to electrical components
	The NEMA works in conjunction		used in individual machines and
	with the IECA to produce and		machine configurations opera-
	promote standards for cables -		ting together (machine groups).
	Washington D.C., USA.		The National Fire Protection
			Association (www.nfpa.org) is
NEMCO	Norwegian testing body, similar		the issuer of this important stan-
	to the VDE in Germany.		dard. NFPA 79 applies to all
			electrical and electronic compo-
Neoprene®	Trade name of the company		nents in machinery with a maxi-
	DuPont de Nemours for synthe-		mum nominal voltage of 600 V.
	tic chloroprene rubber.		NFPA 79 was revised in 2006.
			The aim of this revision was to
Network	Cable network used to create		harmonise NFPA 79 with its
	connections between data sta-		European counterpart IEC/EN
	tions.		60204.
Neutral conductor	Neutral conductors, where used,	Nominal voltage	The nominal voltage is the volt-
	may not have a smaller cross-		age to which the structure of the
	section than the outer conduc-		cable relates in terms of its elec-
	tor, see VDE 0100 Part 520, Sec-		trical properties. The nominal
	tion 524.2.		voltage is expressed by specify-
			ing two AC voltages U0/U in V :
NFPA	Abbreviation for National Fire		U0 = Effective value between an
	Protection Association. Issuer of		outer conductor and earth (non-
	NFPA standards and NEC – USA.		insulating environment). U =

Glossary N

Effective value between two outer conductors in a multi-core cable or a system of single-core cables.

Norms

The German Federal Supreme Court gave the following statement on engineering rules on 14.05.1998: Recognised engineering rules are those that are recognised as correct by the theory and have demonstrated their effectiveness in practice. By contrast, according to the BGH DIN standards are only private engineering regulations with the nature of recommendations, which do reflect the recognised engineering rules but lag behind them or could actually be incorrect.

Numeral identification	See → Colour codes/Numerical identification
Numerical aperture	Sine of the maximum possible launch angle of a light wave- guide.
NYM	These cables (standard cable for fixed installation) are designed for installation above, on and

below ground, in dry, damp and wet areas and within walls and concrete, except for direct embedding in shaken, vibrated or compressed concrete. The resistance per unit length records the losses in the metallic conductors. The conductor

dimensions, material and the

temperature determine the DC

resistance Ro'. Because of skin effect, the conductor resistance increases as the frequency rises. It also shows a linear increase as the cable length increases. Austrian format for invitations to tender. **Operating supplies** All objects needed when using electrical energy, e. g. switch,

motors and cables.

The range between the lower (lowest permissible temperature) and upper (highest permissible temperature) limit temperature that may be utilised by the operator.

Ohmic resistance

ÖNORM-Format

Operating

temperature range

Operating voltage	The actual voltage in a grid. This can fluctuate by up to 5%, caused by the alternating use of consumers.		a three-phase system but not conductors come from the mid- point or neutral point. The con- ductor is arranged concentrically around the inner conductor of
Opposite direction of lay	See → Stranding		a coaxial pair.
Order length	The length of cable ordered by the customer.	Outer diameter	Diameter of the smallest circle that will enclose the surface of the sheath.
OTDR	Measuring method for testing glass fibres for faults or trans- mission quality. OTDR stands for	Outer sheath	Enclosed cover for protection of the elements underneath.
	Optical Time Domain Reflecto- meter.	Outer sheath	On the one hand, refers to the outer covering of a cable. On the other hand, it is the entire opti-
Outdoor cable	Cables suitable for outdoor lay- ing in the ground, in pipes, in the air, in rivers and lakes, in mines, on ships, for interior spaces or		cally transparent material in a light waveguide, excluding the core.
	the most varied of industrial plants, etc. The design of the cable depends on the electrical, thermal, mechanical and chemi-	Overcurrent	If the permitted ampacity is exceeded, this is referred to as overcurrent.
	cal laying and operating condi- tions.	Overcurrent protection devices	Overcurrent protection devices break the current supply in case of overcurrent. They include
Outer conductor	Conductors that connect current sources with consumables. For example, C1, C2 or C3 in		overcurrent protective switches and safety fuses.

Oxygen index	Percentage oxygen content in the ambient air that is necessary to maintain combustion after removal of a flame. As the natu- ral oxygen content in the air is approx. 23%, materials with an oxygen index of greater than 24	Patch cable	Patch cable complying with EN 50173/ISO IEC 11801 is used to provide a flexible connection between ports in patch fields and the connection to telecommunication sockets.
	are generally self-extinguishing when the flame is removed. This term comes up primarily in con- nection with halogen free cables.	Patch field	A patch field is the switching device that is used to set up, establish and route connections.
	C	PE	Abbreviation for polyethylene.
Pad	Non-conductive element made of insulating material (PVC) or textile, used to fill up gaps in a strand group. Also known as	Photodiode	Semiconductor diode that absorbs light and feeds the charged particles released to an
Pair	a dummy core. Two stranded → cores within a larger strand group (see → Ele- ment). The inductive coupling of		external circuit as a photoelec- tric current. A distinction is made between PIN photodiodes and avalanche photodiodes.
	two parallel conductors is reduced by twisting the two cores together as tightly as possible (\rightarrow twist length).	Photovoltaic	Photovoltaics refers to the direct conversion of solar energy into electrical energy using solar cells. Photovoltaics is a branch of solar technology, which inclu-
Panel mount base	Panel mount bases are designed for the feeding through of cables from below. The panel mount base is mounted to control cabi- net walls for connecting control or power cables.		des other technical uses of solar energy.

Pigtail	Short part of a fibre optic cable on a laser diode or connector. The pigtail is the coupling link between a component and transmission fibre and is perma- nently fixed to the component.	Polychloroprene-rubber	Synthetic rubber is resistant to solvents, has very good strength properties and is flame resis- tant, however very expensive (high-quality rubber cables, Pat- tex glue).
PiMF	Abbreviation for pairs in metal foil.	Polyethylene	Polyethylene is a halogen-free plastic, but is highly flammable. By adding additional materials,
Pollution level	Numerical value specifying the anticipated pollution of the mic- ro-environment. Pollution levels		PE can be made flame retardant and smokeless.
	1, 2 and 3 are used. The polluti- on level is used to assign air gaps and creep distances. In industrial environments, the pol-	Polyuretane	Extremely impact resistant, difficult to strip, strong reset forces. (PUR, $11Y$, Q).
	lution level is typically 3.	Polyvinylchloride	Polyvinylchloride is a halogena- ted plastic. The halogens are
Polyamide	Polyamide is a polymer. Polyami- de is cold resistant with impact loads, impact resistant and abra- sion resistant.		chlorine, bromine, fluorine, iodi- ne and astatine. Chlorine and fluorine are used to make plas- tics flame retardant and more resistant to external influences.
Polycarbonate	The prerequisite for resistance is that no aggressive components such as emollients (PVC) or sol- vents attach the polycarbonate. The material swells up, which can lead to stress cracks.		Cables with PVC sheathing are flame retardant. Halogenated plastics produce highly toxic gases when they burn, which form aggressive acids when they mix with extinguishing water and can, in turn, cause extremely severe corrosion damage.

Power dissipation factor Preform	Power that is converted into heat or other energy losses. Glass rod from which the glass fibres for light waveguides are drawn. When drawing the glass fibres, the ratio of core glass to shell glass is maintained.	Protective conductor	(Symbol PE) A conductor that is necessary for certain protective measures against shock cur- rents to create the electrical connection to subsequent parts. The protective conductor is marked in green/yellow (GNYE) in cables.
Print wheel	This procedure is generally only a cost-effective option for ave- rage or large batches as a new print wheel is required for every change made to the print. Print	PTFE	Abbreviation for polytetrafluoro- ethylene, TEFLON [®] plastic (PTFE); a trade name of the com- pany Du Pont de Nemours.
	wheels can, however, be used for geometrical logos and inver- se printing. Print wheel results are also relatively easy to remo- ve and wipe away.	PUR	Abbreviation for polyurethane; a ductile, abrasion resistant ther- moplastic alternative to rubber, e. g. in ÖLFLEX [®] 400P, ÖLFLEX [®] 540P.
Profibus	The Profibus network is based on the principle of master-slave communication. A central cont-	PVC	Abbreviation for polyvinylchlori- de.
	roller – the field bus master – cyclically reads the information from the field devices – the field bus slaves – and writes their out- put values. In a Profibus DP net-	PVC-powder additive	Additives are added to PVC mix- tures as matting agents, lubri- cants, colour pigments, wax for smooth surfaces.
	work, a high-speed transmission rate of up to 12 Mbit/s is possi- ble. It is based on the European standard EN 50170.	Quad	Stranding type in which the four individual cores are twisted into a quad (telecommunications cables).

The RAL colours with four-digit numbers have been a yardstick in colouring for more than 70 vears. The collection of colours currently includes more than 200 colours. The basic collection for mat shades is the RAI 840-HR register. The collection for gloss shades is the RAL 841-GL register. The basic collections are continuously updated in line with the requirements of industry. These collections cover a wide range of applications. The registers provide a colour template for designs, but also include safety and signal colours and comply with the colour specifications in DIN standards.

Rated current

Current determined by the manufacturer, primarily at an ambient temperature of 40°C, which the connector can carry on a permanent basis and which simultaneously flows though all contacts which are connected to the largest possible conductor. In the process, not exceeding the upper limit temperature.

Rated voltage Value of a voltage, measured according to the connector assembly and referring to specific operating conditions. REACH directive (EC) No.

1907/2006 on registration, evaluation, authorisation and restriction of chemical substances With the REACH directive. the EU created a harmonised system for the registration, evaluation. authorisation and restriction of chemicals - referred to as REACH for short. The purpose of the directive is to ensure a high level of protection for human health and the environment.

Receiver sensitivity

REACH

The light output required by the receiver for low interference signal transmission. For digital signal transmission, the average light output (in W or dBm) required to achieve a bit error rate of 10 - 9 is normally specified.

Reel

Receiver, optical

Assembly for converting optical signals into electrical signals. It consists of a photodiode with a connecting fibre and plug and a low-noise amplifier and electronic signal processing circuits. Where possible, the main components of the receiver are normally combined into a compact sub-unit known as the reception module.

To keep setup times and transport costs down, the cable industry tries to supply large cables and long cable lengths on reels. In addition, this saves on connecting points and the associated fittings with longer cable lengths. The length supplied is limited by various factors, including the tensile strength and flexibility of the cable and the mass or cable volume. There are a large number of different reel sizes in the cable industry. Most winding systems in the cable industry now have tables showing the capacity and the product lengths and bending radii that can be wound, ensuring that the correct choice of reel can be made.

Reels consist of a circular core. which is bounded on both sides by flanges of larger diameter. The flange diameter is also the nominal size of the reel. Steel sockets are fitted in the centre of the reel flanges to hold the drive axes or barrels. These prevent damage to the reel flanges when winding and unwinding. On one reel flange (up to 1800 mm nominal size) there is a through hole for inserting one end of the cable; on larger reels, an inlet spiral is fitted to hold the end of the cable. This means that both ends of the wound length of cable are accessible and final inspection of the cable length can be carried out. Shipping reels are normally made of pine or spruce wood.

Reel size choice

Reel structure

Reeling	This refers to the ability of cables to withstand constant winding	Refractive index	The factor n, by which the light velocity in an optically dense
	and unwinding over a long peri-		medium (e. g. glass) is smaller
	od of time without sustaining		than in free space. More accura-
	damage. For mobile consumers		te term: Phase refraction index.
	(e.g. a crane), the cable length		
	required for the different wor-	Refractive	Progression of the refractive
	king positions is carried on a	index distribution,	index n across the cross-sectio-
	reel. Constant winding and	index profile	nal area of a fibre optic cable.
	unwinding makes high demands		
	on the cable construction, which	Resistance	Resistance = Voltage/Current:
	means that only special cables		"Obstruction" of the current
	are suitable.		flow, expressed in Ohm. The
			lower the cross-section, the gre-
Reference earth	Part of earth considered as con-		ater the resistance. The more
	ductive that lies outside the zone		Ohms, the weaker the current
	of influence of any earthing		flow.
	arrangement.		See also → Corrosion resistance, ozone resistance, radiation-
Reflexion	Signal reflections occur at coup-		resistant cables.
	ling points between components		
	such as plugs and cables and, in	Resistant	The cable has a resistance to
	copper networks, can be attribu-		certain substances, i. e. they do
	ted to different characteristic		not destroy it.
	impedances: In cases of extreme		
	differences in characteristic	Retention	The ability of a cable gland to
	impedance, this leads to signal	of cable glands	limit the movement of a secured
	distortion.		cable under static load.

RFID	RFID stands for Radio Frequency Identification and means that data can be transmitted with no		tion of excavator drivers to the cable route when excavating.
	contact or line of sight.	Rubber insulated cable	Cable with rubber sheathing. For example, H05 RR/RN, H07 RR/
RJ45	An RJ45 connection is an eight- pin miniature connector system, e. g. for patch cables. The con-		RN at Lapp (previously: NMHöu/ NSHöu).
	nector is standardised to comply with the ISO/IEC 11801 cabling standard.	S-FTP	The structure of shielded foil and braid twisted pair (S-FTP) cables is made up of a foil screen over all pairs, over which an additio-
RoHS	The EC directive 2002/95/EC for limiting the use of certain hazardous substances in electri-		nal screen of tin plated copper braiding is placed.
	cal and electronic equipment governs the use of hazardous	Same direction of lay	See → Stranding
	substances in equipment and components. Along with the applicable implementation in national law are referred to by	Sample test, screening	Testing of production lengths or production parts in relation to production quantity.
	the abbreviation RoHS (Restric- tion of (the use of certain) hazar- dous substances).	Screened cable	Cables with screen in outer layer, over the cores or in double sheath. The screen can be made from braiding, foil or solid metal.
Route warning tape	In excavations, the greatest damage occurs on cables alrea- dy laid in the ground. For this reason, route warning tapes are laid around 40 cm above the laid cables, which draws the atten-		With the foil version, a drain wire from the filler strand is used. Identified with a "C", and with "CY" for additional PVC shea- thing if copper braiding used.

Self-extinguishing	Property of a (synthetic) materi- al to extinguish itself when a flame is removed from the mate-		separating foils in PVC insulated cables.
	rial.	SEV	Abbreviation for Schweizer- ischer Elektrotechnischer Verein
SEMCO	Swedish testing body, similar to the VDE.		[Swiss Electrical Engineering Association], testing body simi- lar to the VDE.
Semi-conductor	Materials whose electrical con-		
Semiconductor bandgap	ductivity depends on various influences, e. g. current direc- tion, temperature, incidence of light. By mixing with conductive materials (carbon, graphite), insulating materials (PVC) can be modified to give semiconduc- tor properties. Energetic distance between the valence band and the conduc- tion band of a semiconductor.	Sheath print	The customer receives informati- on about the printing of cable sheaths regarding design, tes- ting- and operation-related mar- kings, colour codes, customer- specific markings and manufac- turer markings. The prints are created using laser and ink-jet printers or print wheels. They are, however, of inferior quality to the embossed letters as they wear away relatively quickly or
Concreting laws	Faile positioned between the		can be rubbed off.
Separating layer	Foils positioned between the individual layers on the cable core to prevent harmful influen- ces.	Sheathed cable	Designation for NYM and other sheathed cables.
		Shielding	A cover made of conductive
Separator	Polyethylene terephthalate foils are used in the cable industry as insulating foils. They have excel- lent dielectric and mechanical properties. They are used as		material that is placed over an individual core, a group of cores or all cores in a cable. Screening is used to protect the cable against penetration by electrical

and/or magnetic fields and to prevent electrical interference from escaping from a cable. Screening takes various forms: a copper wire braid or \rightarrow covering. copper or aluminium foil wrapping or enclosed tubular copper or aluminium bodies. For the screening, the covering density is defined in percent, relative to the area located below the braiding.

Shipping reels

The correct choice of shipping reel is a crucial factor in the quality of a cable from winding to installation. The reel size and thus the winding volume is determined by the diameter and length of the material to be wound and the mass of the cable. The delivery agreement between the manufacturer and the customer is determined by the diameter and mass from the production design and the product length. It is critical that the bending radius of the cable, which determines the size of the reel core, is maintained.

Shore	Hardness of the cable sheath. The definition is: The resistance to penetration by another body, which is measured without exception before the occurrence of damage. Shore A test is used for soft plastics, Shore D test for harder plastics.
SIA	Swiss format for invitations to tender.
Signal cable	Signal cables are used to control the accuracy and precision of electric motors. (For example, ÖLFLEX® connecting and con- trol cables, ÖLFLEX® SERVO, UNITRONIC® data cables at Lapp).
Single conductor	Conductor which, unlike a strand, consists of just a single wire. A rigid wire is suitable for fixed installation.
Single wire	See \rightarrow Cable, single-wire.
Single-mode fibre	Waveguide in which only a single mode can be propagated at the operating wavelength.

Single-wired conductor	A single-wire conductor consists of just one wire.	
Skin effect	The higher the frequency of the effective or interference signal, the more the high frequency cur- rent is pushed towards the sur- face. The skin effect is the pro- perty of an alternating or high frequency current in a conductor to move towards the surface due to field line induction processes. This limits the penetration depth of an external electromagnetic field into the object and thus its effectiveness inside.	Speed of signal propagation Spiral cable
Slave	Subscriber in a network that can only communicate in data exchange when addressed by the master (see \rightarrow ASI).	
SNA	Abbreviation for System Net- work Architecture. Network architecture concept that enab- les data to be transmitted bet- ween different types of compu- ter.	Splice
Specific volume resistance	The specific volume resistance [Ohm m] results from the mea- sured volume resistance [Ohm]	

multiplied by the measuring area [m²] divided by the sample length [m]. VDE 0207, Part 4 and VDE 0303, Part 30.

Signals propagate in all cables at a speed that is always lower than the speed of light. The NVP value specifies the ratio of this speed to the propagation speed of light.

Flexible cables that are formed into a "spiral spring". The cable is wound onto a mandrel. The addition of heat (tempering) reduces the tensions in the plastic caused by the winding process, which means that the cable retains the spiral shape in a stress free condition after cooling. When expanded, the spiral extends and, when the force is no longer acting upon it, returns to its original condition.

Connection of two light waveguides created by melting their ends.

Fixed connection between two light waveguides. A distinction is made between bonded and wel-

and Braid Twisted Pair), the cores are twisted in pairs and individually screened with a metallic foil, to achieve exceptionally low near end crosstalk. An additional overall screen is then

	ded splices (→ Welded light waveguide connection).
Stabiliser	 a) A component used in some plastics to obtain certain phy- sical and chemical properties during processing and the usage time. b) Additives (e. g. lead, tin or cadmium salts) for plastics. They delay or counteract the decomposition and aging pro- cess that occurs when expo- sed to thermal loads.
Step index fibre	Light waveguide with a stepped profile, i. e. with a refraction index profile that is characte- rised by a constant refraction index within the core and a sharp decline in the refraction index at the boundary of the core and the sheath.
STP	In twisted pair cables with foil screening of the individual pairs

added The ability of a cable gland to of cable glands limit the movement of a secured cable under a dynamic and torsional load. The individual wires in a conductor combined into a bundle: the number and individual wire thickness varies according to the desired cross-section. The individual wires are either bundled by stranding or by twisting. Individual cores, e. g. LiY, H05V-K, H07V-K

Stranding

Strain relief

Strand

The individual elements of cables are wound parallel around a central element. The elements can be the individual wires in a conductor or the cores or groups

and an overall braided screening

(STP = Individually Screened Foil

of cores themselves. Depending on requirements, the elements are twisted or stranded with different twist lengths. This is done in concentric layers, one on top of another, according to the number of elements. If the subsequent laver of the element is stranded in the same direction as the preceding layer, this is known as parallel lay stranding, as opposed to cross lay (reversed lay) stranding, where each subsequent layer is stranded in the opposite direction to the previous one. The stranding has an "S" lay if the stranding direction runs to the left as an observer looks at it, or a "Z" lay if the stranding runs to the right: A distinction is also made between stranding techniques with and without back twist.

Stranding machine, twister

Stranding machines are used to strand the components of a cable. Different types of stranding machines include single twist, double twist, multiple twist, high-speed, basket, SZ and universal stranding machines.

Strip lines are used as fixed signal transmission cables in control and steering technology. measurement and data processing technology. They can contain up to 40 cores which lie parallel to each as a result of the welded insulating cover. Single cores can be separated from the strip line, without causing any damage to the insulating cover. Their flat arrangement means they can be guided through narrow slots or openings. They are fixed in place using brackets or adhesive.

Is used as an insulating material for telecommunication cables (\rightarrow Dielectric). It has a good strength value, however is not resistant to solvents.

The property of metals and oxides to lose their electrical resistance due to cooling when a socalled transition temperature is reached.

Strip line

Stvrol

Super conduction

Supporting cable	Because of their small dimen- sions, they are used for installa- tion in small and miniature equipment.	T-Coupler	Optical component for com- bining the light from two light waveguides (see also \rightarrow Coup- ler). Conversely, it can also be used to split the light output in
Supporting core	Strands of hemp, steel or plastic are incorporated into the const- ruction as supporting elements		one light waveguide into two out- going light waveguides.
	or to absorb tensile forces. In most cases, the carrier organ is positioned next to the core, i. e. in the middle of cables. Howe- ver, there are also constructions in which one or two steel strands are positioned outside the bunch of cores but below a shared outer sheath.	Take-up system	Sheathed cables are generally wrapped around wooden or pro- cess drums. The most common types of winding devices are bot- tom roller winders, axial winders and barrel winders. Depending on their flexural loading, tensile strain, torsional strain, design, storage, mechanical load and transport, cables are individually
Surface mount base	Lower housing sections with an enclosed base are referred to as surface-mounted. Surface moun- ted bases are available with a		wrapped and delivered on drums, bobbins, in coils or bar- rels.
	cable outlet on the right-hand side or on both sides of the housing.	Talcum	Talcum is a mineral, slightly fatty natural product. It is used in powder form as a separating agent or lubricant. It is also used
Synthetic india rubber	Butyl synthetic rubber has a high resistance to ageing and lower gas permeability. It is highly resistant to chemicals.		when mixed with mica. When sheathing a strand of cores, to prevent the sheathing material

	that is applied when hot from sticking to the core insulation, the strand is dusted with talcum first. As well as the separating effect, this greatly reduces the friction between the individual elements of the cable and thus promotes flexibility and strip- ping.	TDR	The Time Domain Reflectometry measuring method is used to locate faults in copper cables. The running time and shape of a reflected pulse enables the pos- sible location of the fault to be determined relatively accurately. For PVC insulated cores, this value is approx. 0.541.
Таре	The stranded assembly, compri- sing several cores, is surrounded by the tape. Generally, the tape is made from one or several syn-	Telephone cord	Cables to or in telecommunica- tion devices which have a high flexural loading or flexibility.
	thetic or paper band layers.	Temperature range	If the specified minimum tempe- rature range is not reached, no
Tape wrapping	Cables can be wrapped in a variety of different insulating materials. The tape is always helically wrapped around the cable as the taping machine operates in a rotary motion and the pull-off movement is always in a longitudinal direction. Several layers of paper or plastic tape are wrapped around the cable		mechanical forces may act on the cable as otherwise the insu- lation will break (rigidity of poly- mer chains). If the maximum temperature is exceeded, the insulation begins to melt (decomposition of polymer chains). Important! With every change of temperature, the resistance of the conductor also changes.

core.

Tensile load	The maximum force with which a cable can be loaded under defined conditions.	Thomson measuring bridge for resistance measurement	Primarily used to measure very low resistances. The measuring range is between 10-6 and one Ohm. It is independent of volta-
Test voltage	The voltage applied to a test spe- cimen to demonstrate a particu- lar electrical strength.		ge changes. The measured result is not falsified by the resis- tance of the measuring lead and other transition resistances (see
Тех	The fineness of fibres is determi- ned using the "fineness in Tex"		also \rightarrow Electrical resistance).
	system. This is a physical vari- able. 1 Tex = a fibre that has a mass of 1g at a length of 1000 m. Example: Polyester silk has a rating of 7 Tex = 1000 m of silk	Tight buffer tube	Fibre type used in light wavegui- des, with a solid plastic layer attached directly to the outer glass.
	weighs 7 g.	Tin	Tin is used for tin plating copper wires.
Thermal splice	A thermal splice is a connection		
	between light waveguides crea- ted by fusing the ends of the conductors.	Torsion	Twisting of the cable about the longitudinal axis. VDE0298, Part 300, Section 5.4.4: Flexible cables are not generally inten-
Thermoplastics, thermoplastic materials	Thermoplastics are non-cross linked macromolecular com- pounds. By heating, it is possible to transfer them repeatedly to a plastic condition. They are pri- marily used for sheathing and insulation of cables.		ded for torsional loads. In cases where this kind of torsional load cannot be avoided, the construc- tion of the cable and the type of installation must be agreed bet- ween the user and the cable manufacturer.

Tracer thread	A thread whose structure, colour or colour combination is registe- red and protected as a trade- mark by a cable manufacturer. It provides information about the manufacturer of the relevant cables (at Lapp, the colour is ochre yellow).	Transfer impedance	Measure for the quality of the screening, defined as the ratio of the voltage along the screening in the system subject to interfe- rence to the current of the sys- tem causing the interference. The transfer impedance (coup- ling resistance) is the key variab- le for the quality of the screen
Train signal cable	Designed for voltages up to 600 V. Depending on their purpose, the cores are twisted in fours or layers. They are PE insulated. Because of the strong electro- magnetic fields on railways, an effective copper screen and steel tape armouring must be fit- ted under the outer sheath.		and depends on the frequency. It is the ratio of the voltage drop along a screen on the side with interference (outside) to the interference current on the other side (inside) of the screen. The coupling resistance is determi- ned by the construction of the screen, the skin effect and the capacitive coupling.
Transceiver	This is the active component of an Ethernet LAN for connection of terminals to the electrical bus cable with collision detection and signal adaptation functions. Transceiver is a combination of the words transmitter and recei- ver. The transceiver performs transmitting, monitoring, recep- tion and interference functions.	Transfer rate	The frequency at which the level of the transmission function of a light waveguide has reduced to half of its value at a frequency of zero, i. e. at which the signal attenuation has increased by 3 dB. As the transmission band- width of a light waveguide is approximately the reciprocal of its length (mode mixing), the

bandwidth/length product is often specified as a quality feature.

Transmission function

A light waveguide acts as a lowpass filter for the signals to be transmitted. While only continuous wave attenuation is important for low signal frequencies (see also \rightarrow Attenuation), higher signal frequencies are also attenuated as a result of the dispersion in the light waveguide. The transmission function of a light waveguide makes this a complex issue; however the phase distortion is normally so low that it is sufficient to specify the figure for the function.

Transmitter, optical

Assembly for converting electrical signals into optical signals. It consists of a transmission diode with connecting fibre, plug and driver amplifier and other electronic circuits. Particularly in laser diodes, a photodiode with control amplifier is required for monitoring and stabilising the radiated power. In many cases, a temperature sensor and a Peltier cooler are also required to stabilise the operating temperature. Where possible, the main components of the transmitter are normally combined into a compact sub-unit known as the transmission module.

Triaxial cable

Trimming

Three-conductor cable that is made up of three connected axes. It consists of one conductor in the centre, the second conductor concentric around the first and the third conductor is isolated from the first two, normally by insulation, a braid and an outer sheath.

Cables are reeled at standard lengths of, for example, 50 m, 100 m and 500 m on cable drums or coils (single cores) and placed in storage. Should a customer require a length shorter than the standard length, the cable is cut to size. The customer is then charged for this adjustment.

TTP	Time Triggered Protocol systems in data technology communicate continuously at predefined time intervals. The bandwidth is 5 Mbit/s asynchronous and 25 Mbit/s synchronous (see also CAN bus system).	UL
Tube cable	Coaxial carrier frequency cable with copper inner conductor, PE discs as spacers, a tube-shaped bend copper tape as the outer conductor and a lead or alumini- um sheath. They are used as long-distance cables for trans- mission of TV signals and com- munications.	UL Approbation for cable glands
Twist protection	Protection of light waveguide connectors against twisting. Without this protection, the end faces of the light waveguide would be next to one another and become scratched, signifi- cantly increasing attenuation.	UL listing mark for listed cables & wires
Type test	Test to be performed periodi- cally that includes all parame- ters that can influence the result. This test must be perfor- med again if advancements or new developments have been	

made or the material, technology or design has been changed. The frequency of type tests is set out in legislation, contracts or operationally.

Abbreviation for Underwriters Laboratories. American testing body, similar to the VDE in Germany.

Approval is particularly required if the machinery or system in which the cable gland has been used is to be exported to the USA. Approval is granted after a test complying with UL 514B and is confirmed by a certificate. The number of this certificate is known as the "file number" (e. g. E 79903).

Cables intended for use as fixed wiring in buildings used for residential, commercial or industrial purposes. Listed cables not only have to meet individual UL product standards, but must also comply with the relevant articles of the National Electrical Code (NEC). Listed cables and wires can be used both for factory

	wiring of electrical equipment, devices, appliances and machi- nes as well as for field wiring of industrial machinery and sys- tems in accordance with NFPA 79. Approval marking on the pro- duct: (UL) = UL Listing mark.	Underground cable	Cables are often designated according to their usage condi- tions. Underground telecommu- nication cables include outdoor cables designed to be routed underground.
		Unit conductor of	Unit conductors are solely used
UL recognition mark for AWM cables and wires	Appliance wiring material or "AWM" comprises cables inten- ded solely for use in factory- wired electrical equipment, devices, appliances, control cabinets and industrial mach- inery as part of a "listed assem- bly". AWM is not intended for field	power cables	as large conductors, from approx. 400 square millimetres. In order to reduce the large amount of heat required during welding, the bundles are separa- ted into subconductors during assembly and rejoined again in a new stranding procedure.
	wiring purposes. Cables with UL	Unit cores of	Several coated fibre optic cables
	AWM style labelling must be used for the applications stipulated by the individual style designation.	fiberoptic cables	lightly undulating and loose in small plastic pipes which are filled with Vaseline or swelling powder.
Ultraviolet radiation	This invisible radiation is the sec- tion of the electromagnetic spectrum that is next to the visi- ble range (UV radiation).	Unit of wires	Bare wire bundles are the initial product for copper strands. They are also used as copper strands in wire screens (non-insulated product).

UTE	Abbreviation for Union Tech- nique de l'Electricité (France).	Vibrator, chopper	A pole reversal of medium power for generation of an AC voltage from a DC voltage.
Vagrancy currents	Currents that do not flow through the electrical mains (L1, L2, L3, N) are referred to as vagrancy currents.	Volt	Electrical unit of measure for vol- tage. 1 Volt is the voltage produ- ced by a current of 1 A with a resistance of 1 Ohm. Voltage =
VDE	Abbreviation for Verband Deut- scher Elektrotechniker e.V.,		Resistance x Current
	[German Electrical Engineering Federation], VDE testing and certification institute – VDE tes-	Volt meter	Instrument for measuring volta- ge.
	ting body.	Voltage-level classes	We refer to four voltage levels. Everything that is < 1000 Volt
VDE Approbation for cable glands	Approval is granted after a test complying with DIN/EN 50262 and is confirmed by an approval certificate,		(< 1 kV) belongs to the low volt- age class. Voltages > 1 kV are classed as high voltage. In practice (no statutory specifi- cation), the high voltage class is
VDEW	Abbreviation for Vereinigung Deutscher Elektrizitätswerke [Association of German Electrici- ty Plants].		divided into: Medium voltage 1 kV - 30 kV, high voltage 50 kV - 150 kV, extremely high voltage 150 kV - 400 kV. There are seve- ral different voltage levels within
Velocity of propagation	Transmission speed of the elec- trical energy in a length of the		these classes.
	cable compared to the light speed in free space. Usually expressed as a percentage.	Voltage, tension	Electrical unit of measure, mea- sured in Volts, i. e. Voltage = Resistance x Current.

VSWR (Voltage Standing Wave Ratio)	Ratio of the transmitted signal voltage to the reflecting signal	Watt	Electrical unit of measure for power V x A = Watts (VA).
	voltage measured along the transmission path.	Wave lengths	Length of a full wave oscillation (period). In optical signal techno-
Vulcanising	Technological process in which temperature, pressure and the use of sulphur compounds, for example, cause the molecules in		logy, three wavelength ranges are normally used – 850 nm, 1300 nm and 1550 nm.
	rubber to form cross linkages. It is this process that gives rubber its permanent elasticity and makes it suitable for industrial use (see \rightarrow Cross linking).	Waveguide dispersion	The dispersion that occurs with non-monochromatic light sour- ces because the a/l relationship and, as a result, field distribution and group speeds of the modes in a light waveguide are wave
Wall thickness	The thickness of the insulation or sheath.		dependent (a is the core radius, I is the light wavelength). In practice, waveguide dispersion
WAN	WAN is the abbreviation for Wide Area Network. This is a large net- work, which can extend world- wide. WANs normally connect LANs (Local Area Networks) via		always acts in conjunction with material dispersion; its overall effect is referred to as chromatic dispersion.
	telephone cables. Routers and gateways connect the LANs using different technologies. WAN is a wide area transmission	Wear resistance	The characteristic of a cable, wire or material to withstand surface wear.
	network for connecting distance users to a central network using public cables.	WEEE directive	Under electrical and electronic equipment legislation (ElektroG in Germany), the WEEE directive governs the withdrawal of elec-

trical and electronic products.

Glossary			Glossary
Wire drawing	Cold forming process, in which a sequence of increasingly small	Wiring cable	Cable for wiring equipment, con- trol cabinets etc.
	drawing dies (carbide cores or		
	diamonds) gradually reduce the	Wiring system	Wiring systems are made up of a
	cross-section of pressed wire or		variety of individual elements,
	wire rod.		such as cable sheathing, contact
Wire termination	Depending on the application		plugs, connector shells, seals,
	Depending on the application, different wire termination		fixing elements, etc. In a car, the wiring system connects the elec-
technique	methods can be chosen. Where		tromechanical and electrical
	ease of service and maintenance		components and guarantees the
	is required, a screw fitting is		transmission of information from
	used. If large numbers of plug		and between the control units,
	connectors with a reliable con-		as well as for the supply of ener-
	nection method are required,		gy to the consumers (engine,
	crimping is the best choice. A		relay, lighting, etc.).
	cage clamp combines ease of		
	service with reliable wire termi-	Working current,	The maximum permissible cur-
	nation, although the space requi-	service current	rent that may be transmitted.
	red per contact for the wire ter-		
	mination is the highest of all the	Woven cable	Several conductors running par-
	methods described here.		allel which are held together
			using a thin sheath. See also \rightarrow
Wire-wrap connection	This is an electrical connection		Flat cable.
	made without soldering. The		
	contact is made by wrapping a	Zinc	In the cable industry, galvanised
	bare copper wire around a		steel tape or steel wire are used
	square rod made of bronze,		as the armouring material (\rightarrow
	brass or silver under high ten-		Armouring) to protect against

sion (also known as cold wel-

Current information www.lappgroup.com/products

ding).

corrosion.

ZVEI

Abbreviation for Zentralverband der Deutschen Elektrohandwerke e.V. [Central Association of German Electrical Trades] (Germany).

Abbreviation for Zentralverband der Elektrotechnik- und Elektronik Industrie e.V. [Central Electrical Engineering and Electronics Industry Association] (Germany).

Absorption	See Glossary
ACR	See Glossary
Actor Sensor Interface	ASI
Address bus	Adressbus
Adhesion	Adhäsion
Aging	Alterung
Aging resistance	Alterungsbeständigkeit
Alternating current	Drehstrom
Aluminium sheath	Aluminiummantel
American wire gauge	AWG, AWG-Leitungen, AWG-Adern
Ampacity	Strombelastbarkeit
Ampere	See Glossary
Analog signal transmission	Analogsignalübertragung
Angle of beam spread	Öffnungswinkel
ANSI	See Glossary
Antenna cable	Antennenkabel
And the school stands	Knickschutz von
Anti-kink cable glands	Kabelverschraubungen
Antioxidant	Alterungsschutzmittel
Approved cables	Approbierte Leitungen
Armour	Bewehrung
Armouring	Armierung, Panzerung, Bewehrung
Armouring types	Bewehrungsarten
AS	AS
ASME	See Glossary
Assembly	Konfektionierte Leitung
ASTM	See Glossary
ATEX approval	ATEX-Zulassung
Attenuation	Dämpfung
Attenuation a	Dämpfung A
Attenuation coefficient a	Dämpfungskoeffizient a
Automative cable	Fahrzeugleitungen
AWM	See Glossary
Backbone	See Glossary

Backscatter	Rückstreuung
Backtwist	Rückdrehung
BALUN	See Glossary
Banding	Bandierung
Bandwidth	Bandbreite
Bandwidth product	Bandbreitprodukt
Bandwidth-length product	Bandbreiten-Längenprodukt
BASEC	See Glossary
Basic raw materials	Basisrohstoffe
Batteries Act	Batteriegesetz – BattG
Battery cables	Batterieleitungen
Baud	See Glossary
Bel	See Glossary
Bending capacity	Biegefähigkeit
Bending cycle	Biegezyklen
Bending radii	Biegeradien
Bending test at low temperature	Kältewickelprüfung
Binary	Binär
Bit	See Glossary
Bit error rate, BER	Bitfehlerrate
Blue cable	Blaue Leitung
Braid angle	Flechtwinkel
Braiding	Geflecht
Breakdown	Durchschlag
Breaking load	Bruchlast
British Standard Wire Gauge	See Glossary
Broadband	Breitband
BS	See Glossary
BSI	
	See Glossary
Bundle	,
Bundle Bus-system	See Glossary
	See Glossary Bündel
Bus-system	See Glossary Bündel Bus-System
Bus-system Cable	See Glossary Bündel Bus-System Kabel, Leitung

Cable gland sizes	Kabelverschraubungsgrößen
Cable print	Aufdruck
Cable set-up	Kabelaufbau
Cable tree	Kabelbaum
Cable type letter code	Leitungskurzbezeichnung
Cables for	Handgeräteleitungen
hand-held machinery	папидегателентипден
Caloric load values	Brandlast
Campus	See Glossary
CAN	See Glossary
Canadian Electrical Code	See Glossary
Capacity	Kapazität, Leistung
Comion from a	Trägerfrequenz,
Carrier frequency	Trägerfrequenzschaltung
000	See Glossary
CE	See Glossary
CE marking	CE-Kennzeichnung
CEBEC	See Glossary
CEC	See Glossary
CEE	See Glossary
CEI	See Glossary
CENELEC	See Glossary
Central element	Seele
Central filler	Kern
Characteristic Impedance	Impedanz, Wellenwiderstand
Chopper	Zerhacker
Chromatic dispersion	Chromatische Dispersion
Circular Mil (CM)	See Glossary
Cladding	See Glossary
Clomping range	Klemmbereich
Clamping range	der Kabelverschraubung
СNOMO	See Glossary
Coating	Beschichtung
Coaxial cable	Koaxial-Kabel
Colour code	Farbcode
Colour print	Bedrucken mit Farbe

Communication	Kommunikation			
Companyating cobla	Ausgleichsleitung,			
Compensating cable	Kompensationsleitung			
Composite layer	Schichtenmantel			
Composite sheath	Schichtenmantel			
Compound	See Glossary			
Concentric conductor	Konzentrischer Leiter			
Conditioning	Aufmachung			
Conductance	Konduktanz			
Conductor	Aderleitung, Leiter, Ader			
Connecting cable	Anschlussleitung			
Connector	Stecker, Steckverbinder,			
Connector	Sternkoppler			
Contact voltage	Berührungsspannung			
Control cables	Steuerleitungen			
Copolymere	Copolymer			
Copper	Kupfer			
Copper base	Kupferbasis			
Copper weight	Kupferzahl			
Copper-clad aluminium wire	Verbunddraht -			
copper-ciad aluminium wire	Aluminium/Kupfer			
Core	Ader, Blindader			
Core check, response at	Aderprüfung, Verhalten			
increased temperature	bei erhöhter Temperatur			
Core check, response with	Aderprüfung, Verhalten			
thermal shock	bei Wärmeschock			
Core diameter	Kerndurchmesser			
Core group	Adergruppe			
Core Ident Code	Ader-Ident-Code			
Core identification	Aderidentifizierung			
Core joint	Aderverbinder			
Core print	Bedruckung – Adern			
Core stranding	Verseilverband, Verseilverbund			
Core stranding with more	Verseilverband			
than four cores	aus mehr als vier Adern			
Core wrapping	Aderumhüllungen			

Corrosion	Korrosion			
Coupler	Koppler			
Crane cables	Kranleitungen			
Crimp connection	Crimpen			
Cross-linked	Vernetzung			
Cross-linked	VPE			
polyethylene XLPE	VPE			
Cross-linking agent	Vernetzer			
Cross-section	Querschnitt			
CSA	See Glossary			
Current	Stromstärke			
D.C.	See Glossary			
Dark current	Dunkelstrom			
Data bus	Datenbus			
Data transfer	Datenübertragung			
Data transmission	Datenübertragung			
Data transmission cable	Datenübertragungskabel,			
Data transmission cable	Datenkabel			
Data transmission rate	Datenübertragungsrate			
Decibel	Dezibel			
Degrees of protection	Schutzarten			
DEL	See Glossary			
DEMKO	See Glossary			
Density	Dichte			
Density unit	Dichtezahl			
Designation label	Beschriftungsbinder			
DESINA®	See Glossary			
DeviceNet™	See Glossary			
Dielectric	Dielektrikum			
Dielectric constant (DC)	Dielektrizitätskonstante (DK)			
Diffusion	Streuung			
Digital signal transmission	Digitalsignalübertragung			
Dimension	Abmessung			
DIN	See Glossary			
DIN EN	See Glossary			
Direct line	Anschlussleitung			

Key words

Dispersion	See Glossary		
DKE	See Glossary		
Drag chain cables	Schleppkettenleitungen		
Drain wire	Beidraht		
Ductility	Biegbarkeit		
Dummy	Blindelement		
Duplex operation	Duplexbetrieb		
Duroplastic	Duroplaste		
Earth connection	Betriebserdung		
Earth electrocode	Erder		
Earthing	Erdung		
ECAD-Bauteilenorm	See Glossary		
EIA	See Glossary		
Elastomere	Elastomer		
Electric circuits	Stromkreise		
Electric diameter	Elektrischer Leiterquerschnitt		
of conductors			
Electric Field	Elektrisches Feld		
Electric resistance	Elektrischer Widerstand		
Electricity	Elektrizität		
Electromagnetic protection	Elektromagnetischer Schutz		
Element	See Glossary		
Elongation	Dehnung		
Elongation at break	Bruchdehnung		
ELOT	See Glossary		
EMC	EMV		
EMK	See Glossary		
EMS	See Glossary		
EN	See Glossary		
EPDM	See Glossary		
EPIC®	See Glossary		
ePLAN®	See Glossary		
Ethylene-Propylene-Rubber	Ethylen-Propylen-Kautschuk		
Explosive atmospheres	Explosionsfähige Atmosphäre		
Extension	Dehnung		
Extension cord	Verlängerungsleitung		

	1 doormano			
Fieldbus technology	Feldbustechnik			
Filler	Füllstoff, Blindader, Beilauf			
Filler wire	Beilaufdraht			
Fire behavior	Brennverhalten			
Fire resistant	Flammwidrigkeit			
Flame retardant	Schwer entflammbar			
Flat cable	Flachbandleitung			
Flat type cable	Flachkabel			
Flexibility	Flexibilität, Biegbarkeit			
Foil	Folie			
Frequency	Frequenz			
Full duplex	Vollduplex			
General cable tie	Universalkabelbinder			
Glass fibre cable	Lichtwellenleiter (LWL),			
Glass libre cable	Lichtleiter-Kabel			
Gradient fibre	Gradientenfaser			
Grid	Raster			
Ground system	Erder			
Gusset	Zwickel			
Halogen free	Halogenfrei			
Hardness	Härte			
Harmonizing key	Harmonisierungsschlüssel			
Heat of combustion	Verbrennungswärme			
Hood	Tüllengehäuse			
Hood termination	Endkappen			
Hook-up wire	Trägerfrequenzschaltung			
Hybrid cable	Hybridkabel			
Imprinting	Prägung			
Index profile	Brechzahlprofil			
Industrial machinery	Industrielle Maschinen			
for USA	in den USA			
	Bedruckung – Kabelmäntel			
Ink-jet printer	und Leitungen – Laser- und			
	Tintenstrahldrucker			

Extruder Faserhülle

Extrusion line

Fibre cover

Key words

Insertion attenuation	Einfügungsdämpfung			
Insertion loss	Einfügungsdämpfung			
Insulated wire	Ader			
Insulation	Isolation			
Insulation resistance	Isolationswiderstand			
Intensity	Intensität			
Interactive	Interaktiv			
Interface	Schnittstelle			
Intrinsically safe	Eigensicher			
Joint	Knoten			
Kink	Knick			
	Bedruckung – Kabelmäntel			
Laser-printer	und Leitungen – Laser- und			
	Tintenstrahldrucker			
Laying temperature	Verlegetemperaturen			
Leading protective ground	Schutzkontakt, voreilend			
Leakage current	Ableitstrom			
Length of lay	Schlaglänge			
Length of twist	Schlaglänge			
Lever series	Bügelarten			
Lift cable	Hängekabel			
Longitudinal water tightness	Längswasserdichtigkeit			
Loss factor	Verlustfaktor			
Machine set-up for conductor insulation – Extrusion	Anlagenaufbau für Isolierhüllen – Extrusion			
Master-Slave principle	Master-Slave-Prinzip			
Material dispersion	Materialdispersion			
Mica powder	Glimmer			
Microbending	Mikrokrümmungen			
Mode	Moden			
Mode dispersion	Modendispersion			
Monomode fibre	Monomodefaser			
Motor cable	Motorenkabel			
Multimode fibre	Multimodefaser			
Mutual capacity	Betriebskapazität			

Nanosecond	Nanosekunde		
Near-end crosstalk,	Next, Fext		
far end crosstalk	(Nebensprechdämpfung)		
Neoprene®	Neopren®		
Network	Netzwerk		
Neutral conductor	Erdleiter, Neutralleiter		
Nominal voltage	Nennspannung		
Norms	Normen		
Numeral identification	Ziffernbedruckung		
Numerical aperture	Numerische Apertur		
Ohmic resistance	Leiterwiderstand		
Operating capacity	Betriebskapazität		
Operating supplies	Betriebsmittel		
Operating	Patriabatamparatur		
temperature range	Betriebstemperatur		
Operating voltage	Betriebsspannung		
Opposite direction of lay	Gegenschlag		
Order length	Bestelllänge		
Outdoor cable	Außenkabel		
Outer conductor	Außenleiter		
Outer diameter	Manteldurchmesser		
Outer sheath	Außenmantel, Mantel		
Overcurrent	Überstrom		
Overcurrent	Überstromschutzorgane		
protection devices	Oberstromschutzorgane		
Oxidation inhibitor	Alterungsschutzmittel		
Oxygen index	Sauerstoffindex		
Pad	Füller		
Pair	Paar		
Panel mount base	Anbaugehäuse		
Patch cable	Patchkabel		
Patch field	Patchfeld		
Photovoltaic	Photovoltaik		
Pigtail	Anschlussfaser		
Pollution level	Verschmutzungsgrad		
Polyamide	Polyamid		

Polycarbonate	Polycarbonat			
Polychloroprene-rubber	Chloropren-Polymerisate,			
Polychloroprene-rubber	Kunstkautschuk			
Polyethylene	Polyethylen (PE)			
Polyuretane	Polyurethan			
Polyvinylchloride	Polyvinylchlorid			
Power dissipation factor	Verlustleistung			
Preform	Vorform			
District	Bedruckung – Kabelmäntel			
Print wheel	und Leitungen – Druckrad			
Protective conductor	Schutzleiter			
PVC-powder additive	PVC-Pulver-Additive			
Quad	Vierer			
Rated current	Bemessungsstrom			
Rated voltage	Bemessungsspannung			
Receiver sensitivity	Empfängerempfindlichkeit			
Receiver, optical	Empfänger, optischer			
Reel	Trommel			
Reel size choice	Trommelauswahl			
Reel structure	Trommelaufbau			
Reeling	Trommelbar			
Reference earth	Bezugserde			
Refraction index	Brechungsindex, Brechzahl			
Refractive index distribution	Brechzahlprofil			
Resistance	Beständigkeit, Widerstand			
Resistant	Resistent			
Detention of eachier stands	Rückhaltevermögen von			
Retention of cable glands	Kabelverschraubungen			
Route warning tape	Trassenwarnband			
Rubber insulated cable	Gummischlauchleitung			
Same direction of lay	Gleichschlag			
Sample test	Auswahlprüfung			
Screened cable	Abgeschirmte Leitungen			
Screening	Auswahlprüfung			
Self-extinguishing	Selbstverlöschend			
Semiconductor	Halbleiter			

Semiconductor bandgap	Bandabstand		
Separating layer	Trennschicht		
Separator	Trennfolien, PETP-Folien		
Service current	Betriebsstrom		
Sheath print	Bedruckung – Kabelmäntel		
	und Leitungen		
Sheathed cable	Mantelleitung		
Shielding	Abschirmung		
Shipping reels	Versandtrommeln		
Signal cable	Geberleitungen		
Single conductor	Massivleiter		
Single wire	Eindrähtig		
Single-mode fibre	Einmodenfaser		
Single-wired conductor	Leiter, eindrähtig		
Skin effect	Skin-Effekt		
Specific	Spezifischer		
volume resistance	Durchgangswiderstand		
Speed of signal	Signalausbreitungs-		
propagation	geschwindigkeit (NVP)		
Spiral cable	Spiralkabel		
Splice	LWL-Schweißverbindung, Spleiß		
Stabiliser	Stabilisator		
Step index fibre	Stufenfaser		
Strain relief	Zugentlastung		
of cable glands	von Kabelverschraubungen		
Strand	Litze		
Stranding	Verseilung		
Stranding machine	Verseilmaschine		
Stretch	Dehnung		
Strip line	Bandleitung		
Styrol	Butadien-Styrol-Kunstkautschuk		
Super conduction	Supraleitung		
Supporting cable	Tragarmleitung		
Supporting core	Tragorgan		
Surface mount base	Sockelgehäuse		
Synthetic india rubber	Butyl Kunstkautschuk		

Key words

T-Coupler	T-Koppler		
Take-up system	Aufwickelanlagen, allgemein		
Talcum	Talkum		
Таре	Bebänderung		
Tape wrapping	Bewickeln mit Bändern		
Taped wrapping	Bewicklung, Lapping, Taping		
Telephone cord	Apparateleitung		
Temperature range	Temperaturbereich		
Tensile load	Zugbelastung		
Tension	Spannung		
Test voltage	Prüfspannung		
Thermal splice	Thermospleiß		
Thermoplastic materials	Thermoplaste		
Thermoplastics	Thermoplaste		
Thomson measuring bridge	Thomson-Messbrücke		
for resistance measurement	zur Widerstandsmessung		
Tight buffer tube	Vollader		
Tin	Zinn		
Tracer thread	Kennfaden		
Train signal cable	Eisenbahn-Signalkabel		
Transfer impedance	Transferimpedanz,		
	Kopplungswiderstand		
Transfer rate	Übertragungsbandbreite		
Transmission function	Übertragungsfunktion		
Transmitter, optical	Sender, optischer		
Triaxial cable	Triaxial Kabel		
Trimming	Ablängen		
Tube cable	Tubenkabel		
Twist protection	Verdrehschutz		
Twister	Verseilmaschine		
Type test	Typprüfung		
UL listing mark	UL Listing Mark		
for listed cables & wires	für "listed cables & wires"		
UL recognition mark	UL Recognition Mark		
for AWM cables and wires	für "AWM cables and wires"		

UL-Approbation	UL-Zulassung
for cable glands	für Kabelverschraubungen
Ultimate elongation	Bruchdehnung
Ultimate load	Bruchlast
Ultraviolet radiation	Ultraviolette Strahlung
Underground cable	Erdkabel
Unit conductor	Bündelleiter
of power cables	von Starkstromkabeln
Unit cores	Bündeladern
of fiberoptic cables	von Lichtwellenleitern
Unit of wires	Drahtbündel
Vagrancy currents	Vagabundierende Ströme
Valley sealer	Beilauf
VDE Approbation	VDE-Zulassung
for cable glands	für Kabelverschraubungen
Velocity of propagation	Ausbreitungsgeschwindigkeit
Vibrator	Zerhacker
Volt meter	Voltmeter
Voltage	Spannung
Voltage Standing Wave Ratio	VSWR
Voltage-level classes	Spannungsebenen
Vulcanising	Vulkanisation
Wall thickness	Wanddicke
Wave lengths	Wellenlänge
Waveguide dispersion	Wellenleiterdispersion
Wear resistance	Abriebbeständigkeit
WEEE directive	WEEE-Richtlinie
Wide Area Network	WAN
Wire drawing	Drahtziehen
Wire termination technique	Leiteranschlusstechnik
Wire-wrap connection	Wickelverbindung
Wiring cable	Verdrahtungsleitung
Wiring system	Bordnetze
Working current	Betriebsstrom
Woven cable	Bandkabel
Zinc	Zink

Safety instructions The safe use of our products

Cables and cords

The use of cables and cords is particularly diverse and is regulated accordingly in the various standards organizations (IEC, EN, NEC etc.) by a large number of application standards.

Here the international standard IEC 60204-1:1997, (Electrical Equipment of Machines – Part 1: General Requirements) with reference to cables and cords and their conditions for use serves as an example.

The fulfillment of these general requirements makes it absolutely necessary that a professional check is conducted by the user to determine whether a specific product standard with other/expanded requirements exists, which has precedence.

The product pages in the Catalogue with product and application standards provides assistance. For example: ,oil-resistant according to VDE0472, Part 803' or ,railway applications: EN 50306-2'.

For the area of harmonized low-voltage power cables (e.g. H05VV5-F/ÖLFLEX® 140), DIN VDE 0298-300 provides a list of requirements and criteria under Pt. 4-7. In most cases, these can also be applied to other low-voltage cables and provide information on recommended uses.

In the following, a selection of important aspects for using cables and lines is summa-rized.

General information

Conductors, cables and cords must be selected so that they are suitable for the operating conditions which occur (e.g. voltage, current, protection against electric shock, accumulation of cables and cords) and for external influences (e.g. ambient temperature, presence of water or corrosive substances, mechanical loads, including loading during installation, fire hazards).

Electrical voltage

The control and connection cables listed in the Catalogue are subject to 73/23/EEC -.Low-Voltage Directive' for electrical operating equipment with a nominal voltage between 50 and 1.000 volts (alternating voltage) and between 75 and 1,500 volts (direct voltage). The nominal voltage is the reference voltage for which the cables and cords are designed and tested. The nominal voltage of cables and cords for use in alternating-current power supplies must be greater than or equal to the nominal supply voltage.

With a direct-current power supply, the nominal supply voltage must not be higher than 1.5 times the nominal voltage of the cable. The continuous operating voltage of alternating-current and direct-current power supplies may exceed their nominal voltage by 10%. The nominal voltage of cables and lines is expressed in volts by the ratio U/U_0 ; here:

 U_o is the effective value of the voltage between an external conductor and ground (metallic casing/(shielding) off the line or surrounding medium)

U is the effective value of the voltage between two external conductors of a multi-core line or of a system of single-core cables.

The dielectric strength of the insulation of conductors. cables and cords must be sufficient for the required test voltage. For cables and cords operated with voltages above 50 VAC or above 120 VDC, the test voltage is at least 2.000 VAC for a period of 5 min. For alternating voltages with a maximum of 50 V and direct voltages with a maximum of 120 V (typically SELV or PELV systems), the test voltage must be at least 500 VAC for a period of 5 min.

The test alternating voltages are listed on the individual product pages in the Catalogue under ,Technical Data', and also enables a selection of cables for which U/U_0 cannot practically be named.

Tensile strains

Up to a maximum value of 1,000 Newtons for the tensile strain of all conductors, the following applies:

Max. 15N per mm² conductor cross-section (without calculating in shields, concentric conductors and divided-up protective conductors) with static tensile strain in the operation of moving/flexible cables and cables for/in fixed installation.

Max. 50 N per mm² conductor cross-section (without calculating in shields, concentric conductors and divided-up protective conductors) with static tensile strain for the installation of cables for/in fixed installation.

Cables for applications in power chains (see Selection Table A2)

These cables are marked with the addition ,FD' in the product name.

In addition to the generally applicable information on installation and configuration in the Technical Table T3, especially those specifications must be observed which refer to individual cables and are listed on the related product pages in the Catalogue.

In particular, these are:

- Restrictions of the travel length (e.g.: ...up to 10 meters')
- Restriction of the minimum bending radius for flexible applications.
- The radius designed with the power chain must not be below the minimum bending radius of the cable!
- The inner radius to the surface of the curved cables is defined as the minimum bending radius.

Transport and storage

Cables and cords that are not intended for outdoor use must be stored in dry indoor rooms and must also be protected from exposure to direct sunlight there. With outdoor storage, the ends of cables and cords must be closed off to prevent the entry of moisture. The ambient temperature during transport and storage is to be in the range from -25°C to +55°C (max. +70°C for not longer than 24 hours). Especially in the range of low temperatures, mechanical loading through vibration, shock, bending and twisting is to be avoided. This especially applies to PVC-insulated cables and lines.

Notices			

Imprint U.I. Lapp GmbH Schulze-Delitzsch-Straße 25 70565 Stuttgart, Germany Tel. +49(0)711/78 38-01 Fax +49(0)711/78 38-26 40 www.lappgroup.com info@lappkabel.de

© 2011 by U.I. Lapp GmbH, Stuttgart, Germany

Reprinting and reproduction even in part is subject to the express consent of U.I. Lapp GmbH.

We reserve the right to change our products, particularly in the interests of technical improvements and advances. We therefore offer no guarantee for illustrations, figures and quality details.

UNITRONIC®

ETHERLINE[®]

HITRONIC[®]

EPIC[®]

SKINTOP[®]

SILVYN®

FLEXIMARK®

www.lappgroup.com